
General Analytical Techniques For
Parameter-Based Procedural Content Generators

Michael Cook∗, Simon Colton∗†, Jeremy Gow∗, Gillian Smith‡
∗Queen Mary University of London, United Kingdom
†Sensilab, Faculty of IT, Monash University, Australia

‡Worcester Polytechnic Institute, USA

Abstract—Most generative systems built in game development
are parameter-driven, but the relationship between parameters
and the output of the system is often unclear. This makes them
frustrating to use for both experts and novices, and as a result
generators are often filtered post-hoc, or tweaked through time-
consuming trial and error. In this paper we introduce two
analytical techniques: smoothness and codependence. We show
how these features help analyse the impact of a parameter change
on a generative system and suggest ways this could feed back
into more intelligent tools that make working with procedural
generators more precise and pleasant.

Index Terms—procedural content generation, generative sys-
tems analysis, co-creativity

I. INTRODUCTION

Procedural generation continues to grow and develop as a
staple game development technique, both as a tool for use
during development to accelerate and augment content cre-
ation, and a runtime game feature that can help achieve specific
design goals such as surprise or unpredictability. Generative
techniques can be seen at work in the biggest-budget AAA
games as well as the smallest hobbyist creations, and we are
seeing increasingly rapid adoption of experimental techniques
(such as Wave Function Collapse [1]) in commercial titles
(such as Bad North [2] or Caves of Qud [3]).

Despite its popularity, procedural generation has retained a
reputation for being unpredictable, hard to control, and even
lacking in artistry [4]. We argue that one of the reasons
for this is a lack of good, standardised tools for interact-
ing with and understanding generative software. This results
in generative engineering being a fragmented practice, with
individual developers building ad-hoc domain-specific tools,
rather than having access to tools which bridge many domains
and techniques, which would allow transferable skills and
knowledge to develop and encourage a higher-level way of
thinking and reasoning about generative systems.

Basic statistical analysis is sometimes employed by practi-
tioners of generative software (e.g. measuring the rate a feature
occurs in outputs), but few specialised tools and techniques
exist to specifically analyse and help solve the problems
inherent in building and using these systems. One of the better-
known techniques is expressive range analysis, which helps
provide a visual overview of a generative system’s behaviour
with respect to given metrics [5]. Several tools, such as Danesh

[6], attempt to automate certain analytical tasks or invert
common interaction processes to give the user more initiative
in editing a generative system.

Most approaches to analysing procedural generators focus
on evaluating the output of the system, reducing what Norman
calls the gulf of evaluation [7], which is a measure of how
difficult it is for a user to interpret the state of a system and
to understand what changes they wish to effect upon it. In
this paper we present techniques to complement this work,
by providing ways to improve the user’s understanding of the
inputs to a generative system, and to provide more clarity over
the actions currently available for them to take. Norman calls
this the gulf of execution.

We present two analytical techniques which can be ap-
plied to parameter-driven generative systems: visualising the
smoothness of a parameter, and the codependence of one
parameter on another. Smoothness measures how consistent
the impact of changing the parameter is on the generative
system. Codependence measures the degree to which one
parameter’s smoothness is affected as the value of another
parameter changes. We show how to calculate and visualise
these, and give examples of how this analysis can reveal
nuances in the behaviour of inputs to generative systems. We
then discuss how these techniques can be embodied in new
tools, both through explicit visualisation of the raw analysis,
and through subtler user interface features that help novice
users without overwhelming them.

The remainder of the paper is organised as follows: in §II
and §III we introduce some background, related work, and
introduce a running example; in §IV, §V and §VI we show
how we measure a change in a procedural generator, and then
go on to describe Smoothness and Codependence analyses;
in §VII and §VIII we discuss how these techniques can be
applied to tools, and detail future work; finally, in §IX we
summarise our contributions.

II. BACKGROUND

In [8] the authors provide a survey of search-based proce-
dural generation, and identify in their taxonomy a distinction
between ‘random seeds’ and ‘parameter vectors’, noting: “At
one extreme, the algorithm might simply take a seed to its
random number generator as input; at another.. the algorithm
might take as input a multidimensional vector of parameters.”

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

We argue that most procedural generators implemented in
games today are parameter-driven in some way or other. Even
generators which rely heavily on seed-based generation, such
as the noise functions which drive world generators in Dwarf
Fortress or Minecraft, exist as part of a larger generative
system which includes many parameters that control the
interpretation or integration of that noise into a more com-
plex generated artefact. Parameters allow both designers and
players to control and edit the generator’s output, even if the
degree of control offered can be variable and confusing. For
the remainder of this paper we will use the term ‘generative
system’ or ‘generator’ interchangeably to refer specifically to
any generative system with at least one non-seed parameter.

A. Definitions

In this paper we will discuss procedural content generation
at different levels of abstraction, from single outputs to abstract
multidimensional spaces of spaces. Here we define some terms
that are useful for understanding the remainder of the paper.

We define a procedural generator as a piece of software
with one or more inputs, called parameters. In this paper
we assume these parameters are real-valued, as our analysis
applies to parameters with an ordered range of values. We
also follow [6] in assuming that a parameter has a lower and
upper bound, either defining the limits of values it can take,
or specifying a range of values that the user is interested in.
When the generator’s code is executed, it produces an output
(sometimes called an ‘artefact’ or ‘content’).

A parameterisation of a generator is an instance of that
generator with each of its parameters set to a particular value.

The generative space of a procedural generator as the
set of all possible outputs a generator can produce under a
particular parameterisation. For some generators this is simple
to calculate, such as permutations of a set, e.g. dealing from
a deck of cards. For other generators an upper bound is
calculable, but the actual set of artefacts in the generative space
may be smaller due to duplication during generation.

B. Related Work

Expressive range analysis is a technique proposed in [5] for
analysing the specific features of the generative space of a
generator. ERAs use functions called metrics which measure
particular features of a piece of content, and use this to visually
represent the system’s generative space. In [5] the technique
is applied to a procedural level generator for a platforming
game, with metrics measuring leniency, which measures how
forgiving a level is towards the player, and linearity which
measures how variable the level’s geometry is.

In [9] the authors present new visualisation techniques
for expressive range that attempt to visualise it beyond two
dimensions, helping a user look at multiple comparisons at
once. They also introduce ways to further analyse the output
of procedural generators, particularly for generative systems
based on machine learning techniques. Like expressive range
analysis, these methods focus on evaluating the output of

generators, in this case finding new ways to characterise the
quality of the generative space.

Many papers contribute specific evaluation criteria, such
as [10], which evaluates a collection of generators which all
create the same kind of content, and contributes new metrics
for measuring the qualities of generated output in the domain
of platforming games. The authors also discuss controllability
in the paper, categorising the generators they assess based on
how they are interacted with. Five of the seven generators
surveyed are parameter-based.

Researchers have also tried to tackle the gulf of execution
problem by developing techniques which are easier to control,
such as in [11] where the authors present a constraint-based
approach for controlling Markov-based generators. In [12] the
authors introduce the notion of Procedural Content Generation
via Machine Learning, or PCGML. One of the motivations
for PCGML is that it ‘avoids the complicated step of experts
having to codify their design knowledge and intentions’ by
allowing users to provide examples of content as training data
for the PCGML system.

New techniques which do not rely on writing code, or allow
different kinds of control over a generative system, are all
valuable ways to advance procedural generation and make it
more accessible. We see these approaches as complementary to
our own, which is to make it easier to codify design knowledge
and express design intent. Our aim is to help users build
their understanding, confidence and ability with procedural
generation through intelligent tools and analytical techniques.

III. RUNNING EXAMPLE

We will use a cellular automata-based generator as a running
example throughout this paper. Cellular automata are popular
among game developers working with procedural generation
– it is one of only two tutorials about procedural generation
provided by Unity [13], the world’s most popular game
development tool, and it has featured in many well-known
games such as Brogue, ADOM and Cogmind.

The generator begins by creating a two-dimensional array.
Each element in the array has a chance to be randomly set to
either 1, denoting a solid tile, or 0, denoting an empty tile. The
probability of this is controlled by the Initial Solid Chance
(ISC) parameter. The generator then performs a number of
passes on the array. The exact number of passes is controlled
by the Iterations (ITR) parameter. In each pass it calculates
the number of solid neighbours a tile has, n. It then applies
two rules to each tile: 1) if the tile is solid and n ≤ x, the tile
becomes empty; and 2) if the tile is already empty and n ≥ y,
the tile becomes solid, where x and y denote the Death Limit
(DL) and Birth Limit (BL) parameters, respectively. When
the number of passes specified by the Iterations parameter
is complete, the dungeon is rendered.

This generator, as well as a more complex variant with four
additional parameters and two phases of generation, can be
found as examples supplied with Danesh [14].

(a) ISC = 0.4, ITR = 6 (b) ISC = 0.5, ITR = 6 (c) ISC = 0.465, ITR = 6 (d) ISC = 0.465, ITR = 2 (e) ISC = 0.411, ITR = 2

Fig. 1: Five outputs from different stages of editing the parameters of a cellular automata-based dungeon generator.

A. Problem Scenario

To motivate our analysis techniques, we describe a scenario
a game developer might encounter when working on a proce-
dural generator. A generative system already has been built
by another team member, which uses cellular automata to
generate dungeons for the player to explore. Figure 1a shows
an output from the system. The developer wishes to make the
dungeons less open and more winding and cave-like.

They first come across the ISC parameter. Initially,
ISC=0.4. They next set ISC=0.45. This improves the struc-
ture of the dungeons somewhat, and so they increment ISC by
another 0.05 and set ISC=0.5 (fig. 1b). Suddenly, the caves
are fragmented and unplayable. That is, the same small change
had an unexpectedly more powerful impact on the system.
After a lot of tweaking, they settle on ISC=0.465 as the value
they want. Figure 1c shows a sample output at this stage.

They next decide to explore the impact of another parameter,
ITR. Initially, ITR=6, which they reduce to ITR=2. This
makes the walls more jagged and organic, which they are
happy about, but this jaggedness now makes some of the
dungeons disjointed, an example of which is shown in fig. 1d.
To fix this, they return to the ISC parameter, reducing it from
0.465 to ISC=0.45. Even though this value produced good
levels just a few moments ago, this slider is now behaving
differently. They finally set the value to ISC=0.41 – almost
as low as its original value of 0.4 – in order to obtain content
they want. Figure 1e shows the final state of the generator.
Despite finding a configuration they liked, the process involved
a lot of guesswork and was hard to understand or predict.

In particular, this example identifies two problems: 1) As the
value of a parameter changes, the nature of its effect on the
output of the generator can shift unexpectedly, making it hard
to predict the effect of changes based on past observations, e.g.
when changing ISC from 0.45 to 0.5. 2) As the value of one
parameter changes, it can change the way other parameters
affect the output of the generator, e.g. when changing ITR
from 6 to 2, the effect of setting ISC back to 0.45 was no
longer desirable, forcing the user to make further changes.

IV. MEASURING CHANGE

The aim of our analysis is to provide insight into how input
parameters affect the output of generative system. As such,
an important part of our analysis is describing the difference

between two parameterisations of a procedural generator –
before and after a parameter change. Moreover, we wish to
keep the analysis general in that it is agnostic to the kind
of content being generated. We thus assume the existence of
user-defined metric functions, in the same vein as expressive
range analysis, to isolate important features of the generated
content that we can evaluate.

Figure 2 shows two sets of sampled data from a cellular
automata-based dungeon generator. The difference between
the two sample sets is the value of the ISC parameter. In each
case, the generator was sampled 250 times, and each sample
was run through a metric which evaluated a property called
Connectedness, which measures how accessible the open areas
of the dungeon are from one another.

We identify two important features of generator samples
such as these. The first is the centroid, which is the average
metric score of the sample. The second is the standard
deviation of the sample. In fig. 2, the centroid is marked
with a red circle, and the red interval marks a distance of
two standard deviations above and below the centroid (limited
to the metric’s value range of [0,1]).

The centroid and standard deviation give us a good un-
derstanding of the current sample distribution, showing the
approximate center of the distribution and how dispersed the
sample is, respectively. Throughout this paper we focus mostly
on single-metric analyses, with no more than two parameters
considered at any one time. This is to keep the visualisation
simple; it is, however, straightforward to look at measuring
centroids in multidimensional space to consider all metrics
simultaneously, for example. We discuss the implications of
this later in terms of visualising our analysis for the user.

We now proceed with a description of our two analysis
techniques, which use this approach to measuring change, and
illustrate our examples with our running example generator,
the cellular automata-based dungeon generator.

V. SMOOTHNESS

The smoothness of a parameter describes how the impact
of that parameter on the output of the generator changes
across the range of values the parameter can take. In order to
make visualisation and interpretation feasible, the smoothness
analyses in this paper are done in two dimensions: comparing
one parameter’s value to the impact on a single metric.

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.2

0.4

0.6

0.8

1

Parameter: ISC

M
et

ri
c:

C
on

ne
ct

ed
ne

ss

Fig. 2: A series of samples from a generator, using two
different values for the ISC parameter. The x-axis records the
ISC value used to generate the sample, and the y-axis records
the Connectedness metric score of each sample.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Parameter: ISC

M
et

ri
c:

D
en

si
ty

Mean
Mean-2SD
Mean+2SD

Fig. 3: A smoothness analysis of the ISC parameter of a
cellular automata generator, measured against the Density
metric.

To perform a smoothness analysis, we sample the parame-
terat regular intervals across the parameter’s full range. This
assumes the existence of minimum and maximum values,
discussed in §II-A. For each value we then sample the gener-
ator many times. For the examples in this paper we sampled
parameters at 10% intervals along their value range, and then
took 250 samples from each parameterisation of the generator.
Each sample is evaluated using the metric function relative to
which we are analysing smoothness. We then calculate the
average and standard deviation of the sampled metric scores.

Next, we create a two-dimensional plot showing each pa-
rameter value plotted against its average metric score, with

additional points showing two standard deviations above and
below the mean. Figure 3 shows a smoothness analysis of
the ISC parameter of the cellular automata dungeon generator,
sampled at 10% intervals, relative to the Density metric, which
measures the percentage of solid tiles in a dungeon.

Studying the smoothness analysis can reveal insightful
information about the behaviour of the parameter. The first
question we can answer is whether this affects the metric in
question at all: this is easy to see by looking at the highest
and lowest mean metric values recorded. In fig. 3 we can see
this stretches the full range of the metric from 0 to 1, meaning
that this parameter has a strong impact on this metric in the
current parameterisation.

To learn more about the behaviour of the parameter as its
value changes we can study the gradient of each segment of
the smoothness graph. A segment of the smoothness graph is
the section between two adjacent sampled parameter values,
representing changing the parameter from one value to another.
Steep gradients indicate segments with large impacts on the
metric scores, while shallower gradients indicate little or
no impact. Moreover, a climbing gradient denotes that the
parameter and metric are positively correlated, while a falling
gradient denotes that the parameter and metric are negatively
correlated. In fig. 3 we can see that segments between 0.6
and 1.0 have gradients close to zero, meaning they have little
impact on the metric, while the segment between 0.3 and 0.4
has a gradient of 3.42, indicating a high impact.

The gradient of an individual segment indicates impact for
that part of the parameter range, but we can also assess how
predictable changing the parameter value is in general by
assessing how much the gradient varies across the parameter
range. A simple way to assess this is by calculating the
standard deviation of the segment gradients. A low standard
deviation means the parameter is generally smooth – there is
little difference between the gradients of segments, indicating
a generally straight-line graph. A higher standard deviation
suggests the parameter behaviour is less predictable. In fig. 3
we can see that this parameter is indeed quite unpredictable.
The lowest segment gradient is 0, while the highest is 3.42,
with an overall standard deviation of 1.21. Changing the
parameter from 0.1 to 0.2 has a much lower impact on the
metric average than changing it from 0.3 to 0.4, despite this
being the same amount of change to the input in both cases.

In addition to estimating predictability and magnitude of
impact, we can also use domain-specific knowledge about our
generator to intuit things such as meaningful ranges to explore.
For example, in the case of fig. 3 we might know that outputs
with a Density metric score of less than 0.2 or more than 0.8
are not usable, in which case we can restrict our exploration
of parameter values to a range of 0.2 and 0.4. We can also
use the standard deviation markers to compare the dispersion
of the generator at different parameter values. For example,
increasing a parameter might cause no change to the position
of the average metric score, but might increase the standard
deviation, meaning the output of the generator is much more
dispersed according to this metric.

Smoothness analysis does not tell us how useful, mean-
ingful or expressive a parameter is; instead, it allows us
to assess abstract qualities of the parameter that relate to
how impactful and predictable the parameter is. Note that
smoothness analyses only hold on the specific parameterisation
for which they are performed. This means that if the value
of another parameter is changed, the smoothness analysis
must be recalculated. While this is a quick solution and fixes
the immediate problem, it doesn’t provide the user with an
understanding of why the smoothness has changed, or what the
implications are if other parameters change again in the future.
To solve this problem, we propose codependency analysis in
the following section.

VI. CODEPENDENCE

A codependency analysis of two or more parameters shows
how the value of one parameter impacts the smoothness of the
others, for a given metric. In this way, codependency can be
thought of as a higher-dimensional smoothness analysis, but
unlike smoothness its function is to establish the relationship
between parameters, rather than illuminate the behaviour of a
single parameter. Many parameters in generative systems are
orthogonal in their impact on the system – changing the value
of one has no effect on the value of the other. However, some
parameters have complex relationships with one another. For
example, as we demonstrate shortly, in our running example of
the cellular automata dungeon generator, the Birth Limit (BL)
and Death Limit (DL) parameters are highly codependent on
one another. Any change to one of these parameters impacts
how the other behaves.

Our basic smoothness analysis which we introduced in the
previous section was two-dimensional, featuring one parameter
and one metric. As we introduce a second varying parameter
to the analysis here, the basic codependency analysis is three-
dimensional. Given two parameters p1 and p2 and a given
metric m, we carry out a codependency analysis of p1 and p2
against m as follows. First, we sample parameter p1 at regular
intervals along its range (as with smoothness, we choose
10% intervals for the examples in this paper). Next, for each
value of p1 we perform a smoothness analysis for parameter
p2 against the given metric m. This produces a series of
smoothness analyses, which can be plotted on three axes
as a surface. Note that codependency analysis is symmetric,
meaning that the same analysis can be performed regardless
of the ordering of p1 and p2.

For example fig. 4a shows a codependency analysis of
the ISC and the ITR parameters from the cellular automata
generator, against the Openness metric (i.e. p1 = ISC, p2
= ITR, and m = Openness). The openness metric measures
what proportion of empty space in the dungeon is entirely
surrounded by other empty space. As shown in fig. 4a,
although the ISC parameter has a significant impact on the
Openness score, changing the value of the ITR parameter
generally does not affect the way ISC behaves, except at very
low values. When the value of the ITR parameter is low, the
behaviour of the ISC parameter changes drastically. Figure 5a

shows three slices from the codependency plot, which clearly
shows the impact of a low ITR value.

As another example, fig. 4b shows a codependency analysis
of the Birth Limit (BL) and Death Limit (DL) parameters,
against the Density metric, from the same generator (i.e. p1 =
BL, p2 = DL, and m = Density). Here we can see a broader
codependency relationship between the two parameters –
almost anywhere on the plot, if one parameter is changed,
the smoothness of the other parameter changes too. However,
the sharpness of the change is not as intense as the example
in fig. 4a. We can see evidence of this in fig. 5b, which
plots three slices from fig. 4b. As shown, the slices are more
spaced apart, but the general shape of their curve is closer
to each other than the slices in fig. 5a. In both cases there
is evidence of codependency, but it takes different forms:
in fig. 4a codependency is isolated to a small part of the
parameter range; in fig. 4b codependency is spread across the
range but smaller in magnitude.

VII. EXAMPLE APPLICATIONS IN DANESH

Smoothness and codependency analyses are useful for those
engineering generative systems. They can be used to reveal
hidden relationships between inputs, and both to solve and
to express problems experienced by users editing and using
generative systems. These techniques can also be implemented
within domain-agnostic tools to automate analysis for non-
expert users. This not only makes the techniques more ac-
cessible and easier to perform, but it can also enable new
forms of interaction that allow novice users to benefit from
the insight of these analytical techniques without having to
interpret them directly. To this end, we implemented both our
smoothness and codependency analyses in Danesh, a tool for
analysing procedural generators [6]. Using our smoothness
analysis in Danesh enabled us to develop a technique we
call automated parameter smoothing, which makes interaction
with parameters more natural, and to prototype codependence
highlighting as a subtle indicator of parameter interrelation.

A. Danesh

Danesh is an interactive tool for exploring, explaining
and experimenting with generative systems [6]. The current
version of Danesh is written as a plugin to the Unity game
development environment. Danesh is designed to help both
novice and expert users accomplish a variety of tasks related
to generative software, from viewing output from the system
or changing parameters, through to more complex operations
such as performing randomised expressive range analyses, or
automatically searching the parameter space to find a target
configuration for the generator in the expressive space [15].

Danesh is designed to be content-agnostic, so it can oper-
ate on any generative system. Users write their own metric
functions that describe properties of the content they are
interested in exploring, which Danesh uses to process and
analyse content, including when it applies automatic analysis
techniques such as expressive range analysis, or automatic
parameter optimisation [15]. When a generator is loaded into

0
0.2 0.4 0.6 0.8 1 0

2

4

6

8

0

0.5

1

ISC

ITR

O
pe

nn
es

s

(a) A codependency analysis of the Initial Solid Chance (ISC) and
Iterations (ITR) parameter, against the Openness metric.

2
3

4
5

6

2

3

4

5

6

0

0.5

1

BL
DL

D
en

si
ty

(b) A codependency analysis of Birth Limit (BL) and Death Limit
(DL), against the Density metric.

Fig. 4: Two codependency analyses for the cellular automata dungeon generator.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Parameter: ISC

M
et

ri
c:

O
pe

nn
es

s

ITR = 0
ITR = 4
ITR = 8

(a) Three slices from fig. 4a.

3 4 5 6

0.2

0.4

0.6

0.8

1

Parameter: DL

M
et

ri
c:

D
en

si
ty

BL = 2
BL = 4
BL = 6

(b) Three slices from fig. 4b.

Fig. 5: Smoothness plots showing slices through the codependency graphs at particular parameter values.

Danesh, the tool scans the code for annotations that mark
parameters the user wishes to interact with, along with user-
specified maximum and minimum values. These parameters
are then displayed on one of the tool’s tabs, with sliders capped
at the maximum and minimum values.

B. Automatic Parameter Smoothing In Danesh

As we described earlier in this paper, parameters that do
not exhibit smooth behaviour can be unpredictable and hard
to control. Figure 3 shows an example of this, with a varying
gradient of change across the range of the parameter’s values.
An ideally smooth parameter would not exhibit this behaviour
– instead, its smoothness graph would be a straight line with
a gradient of 1, as in the graph of y = x. In this case of

perfect smoothness, the change in metric score is consistent
and monotonic throughout the full range of the parameter, and
thus much easier to control and think about.

Smoothness analysis provides a lot of insightful informa-
tion, but this may be overwhelming for less experienced users,
and it does not provide a direct way to fix unsmooth param-
eters. To solve this, we have implemented a technique called
automatic parameter smoothing in Danesh, which transforms
the controls for a parameter so that they appear to the user to
have a more linear relationship with a target metric.

For instance, consider the outputs from the dungeon gen-
erator in the top row of fig. 6 as the ISC parameter is
increased along its value range. These outputs are unsmooth
with respect to the Density metric, which we can see from

(a) 5% of range (b) 25% of range (c) 50% of range (d) 75% of range (e) 95% of range

(f) 5% of range (g) 25% of range (h) 50% of range (i) 75% of range (j) 95% of range

Fig. 6: Sample outputs from an unsmoothed (top) and smoothed (bottom) parameter value range.

how rapidly the density changes in some parts of the range,
and how slowly it changes in others. Between 25% and
50% of the parameter’s max value, the density soars from
20% to over 95% (which we can verify by cross-referencing
fig. 3). This means that 75% of the range of density values
the parameter can cover are expressed through just 25% of
the parameter’s range. To address this, we can automatically
smooth the parameter, to allocate a wider bandwidth to more
meaningful parts of the parameter’s value range. An example
of a smoothed parameter is shown in the bottom row of fig. 6.
We can see that the values between 25% and 75% now express
a more useful range of outputs. In fact, the central 50% of the
smoothed parameter range expresses just 13% of the original,
unsmoothed parameter’s range, showing how impactful the
effect of smoothing can be.

To perform automatic smoothing on a parameter, p, with
respect to a metric, m, we first compute a smoothness analysis
to derive a graph similar to fig. 3. We note the lowest and
highest recorded average metric score as mmin and mmax

respectively. This will be used to smooth the user’s input in
the next step. We now replace the unsmoothed parameter slider
with a new smoothed parameter slider. This slider looks the
same, but has no markings for minimum or maximum value,
instead abstracting the range of the parameter. Internally, this
slider is mapped onto the range [0, 1]. When the user chooses
a value on the smoothed slider, we map this value from [0, 1]
back onto the range [mmin,mmax]. This value represents the
expected value for m under the smoothed parameter, which
we call mexp. To find the corresponding value of parameter
p, we look up mexp on the original smoothness analysis, and
interpolate a value for p that corresponds to mexp.

Smoothed parameters must currently be requested manually
by the user, because they are dependent on the current param-

eterisation of the generator and relative to a particular metric.
The user picks a metric they wish to analyse smoothness in
relation to, and the smoothed parameter can then be used until
any other parameter is changed. At this point, the smoothed
parameter is replaced by the original unsmoothed parameter
until a new smoothness analysis is performed. The more
intervals the underlying smoothness analysis is sampled at,
the smoother the resulting parameter is.

C. Codependence Highlighting

We have implemented automatic codependency analysis into
Danesh, and have begun prototyping a way for it to auto-
matically highlight parameters that are affected by a change
as the user edits parameter values. To do this, we calculate
codependencies in advance between all parameters in a system,
and then when a user begins to change a parameter p from
one value to another, for each other parameter q we take two
slices across the codependency surface, for the old and new
values of p. We calculate the difference between the two slices,
and use the magnitude of the difference to recolour the name
of the parameter in Danesh’s interface. A mockup of this is
shown in fig. 7. We are still exploring the best way to reduce
the difference between two slices to a scalar value, and so will
continue to develop this feature in the future.

VIII. FUTURE WORK

1) Non-monotonic Parameter Smoothing: Smoothness
analysis can sometimes reveal that parameters have non-
monotonic relationships with metrics. This causes problems
for our parameter smoothing approach, since it makes our in-
verse lookup technique impossible as it is no longer operating
on a function (if m both increases and decreases as p increases,
then there are some values of m which are obtainable from
more than one value of p).

Fig. 7: Highlighted parameters after codependency analysis.

To overcome this, we believe we can partition the smooth-
ness analysis into multiple segments by dividing it at every
stationary point on the line. Each segment of the analysis
can then be smoothed on its own, using the same process
as described earlier, with a slight adjustment to the limits for
the parameter value in each segment. This provides us with
n + 1 smoothed intervals for n stationary points in the line.
We propose labelling or recolouring these segments of the
smoothed parameter to make it clear to the user that these
regions exhibit different behaviour, even after smoothing.

2) N-Dimensional Analysis: Throughout this paper we have
focused on two- and three-dimensional analysis of generative
systems. This level of dimensionality is useful as it is easily
illustrated and thus communicated to others, and is also
of a reasonable dimensionality for someone to be able to
understand and reason about.

One of the problems with this kind of analysis, however, is
that only part of the system is being examined at any one time.
It is quite possible to calculate a smoothness analysis of a pa-
rameter against all metrics in a system simultaneously, but this
results in a multi-dimensional shape that is extremely hard to
render legibly or imagine. Merely thinking about this system,
much less performing mathematical operations or comparisons
on it, is difficult for humans. However, it is not any harder
for software, and in fact it may be preferable for a system
such as Danesh to analyse all dimensions of this problem
simultaneously. A point of future work is to assess what new
automated operations become available by performing an n-
dimensional analysis of the relationships between metrics and
parameters for a given system, and whether existing techniques
(like codependency highlighting on parameters) become more
meaningful or accurate when extended to n-dimensions.

IX. CONCLUSIONS

Parameter-driven approaches to procedural content gener-
ation remain a popular technique for generating content for
games. Their natural structure as a system with adjustable
controls which lead to changes in output makes them appealing
for newcomers, which makes it likely they will remain a
popular technique for some time. As such, it’s important that
we develop a robust set of general analytical techniques for
describing the behaviour of these systems. This is important
not only so that we can formally discuss them, but also so
that we can build better tools that compensate for the more
confusing, complex or unclear aspects of these systems.

Many approaches to analysing procedural generators thus
far have focused on understanding the output of the generator,

such as ERAs. In this paper we focus on the other half of the
system, to try to provide ways to analyse how the parameters
that control a procedural generator impact the behaviour of
that generator. We introduced two new terms: smoothness, to
describe the linearity and monotonicity of a single parameter’s
impact on the output of a generator; and codependence, to
describe how the smoothness of a parameter is affected by
the value of another parameter. We showed how to calculate
and represent these properties using sampling techniques. We
also showed how these techniques can be applied to tools, by
showing how a nonlinear parameter-metric relationship can be
linearised and presented to the user in a different way.

Building better tools that are easy to use and offer powerful
new modes of expression is vital for advancing procedural
content generation, and in particular its role as a tool for
game designers, not just technical programmers. The field
of generative software research and practice has suffered
for decades from severe fragmentation, particularly within
games where neither code nor knowledge seem regularly trans-
ferrable. We believe that pushing for more general analytical
techniques, and finding ways to embed them into tools which
are accessible and understandable, is one of the best things we
can do to advance the field.

X. ACKNOWLEDGEMENTS

The first author is supported by the Royal Academy of
Engineering under the Research Fellowship scheme.

REFERENCES

[1] ExUtunmno, “Wave function collapse,”
https://github.com/mxgmn/WaveFunctionCollapse.

[2] Plausible Concept, “Bad North,” Nintendo Switch, 2018.
[3] Freehold Games, “Caves of qud,” 2015.
[4] G. Duncan, “No Man’s Sky: How I Learned to Love Procedural Art,”

https://www.youtube.com/watch?v=vcEA41eBOGs.
[5] G. Smith and J. Whitehead, “Analyzing the expressive range of a level

generator,” in Proceedings of the Workshop on Procedural Content
Generation in Games, 2010.

[6] M. Cook, J. Gow, and S. Colton, “Danesh: Helping bridge the gap be-
tween procedural generators and their output,” in Procedural Generation
Workshop, FDG, 2016.

[7] D. A. Norman, The Design of Everyday Things. Basic Books, Inc.,
2002.

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” 2011.

[9] A. Summerville, “Expanding expressive range: Evaluation. methodolo-
gies for procedural content generation,” in Proceedings of the Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment,
2018.

[10] S. Dahlskog, B. Horn, N. Shaker, G. Smith, and J. Togelius, “A
comparative evaluation of procedural level generators in the mario ai
framework,” in Proceedings of the International Conference on the
Foundations of Digital Games, 2014.

[11] S. Snodgrass and S. Ontañón, “Controllable procedural content gen-
eration via constrained multi-dimensional markov chain sampling,” in
Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, 2016.

[12] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgrd, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, 2018.

[13] Unity, “Cellular automata,” https://tinyurl.com/unitycellular.
[14] Unity Asset Store, “Danesh,” https://tinyurl.com/daneshdl.
[15] M. Cook, J. Gow, and S. Colton, “Towards the automatic optimisation of

procedural content generators,” in IEEE Conference on Computational
Intelligence and Games, 2016.

