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Abstract—As we develop more assistive and automated game
design systems, the question of how these systems should be
integrated into game development workflows, and how much
adaptation may be required, becomes increasingly important.
In this paper we explore the impact of software engineering
decisions on the ability of an automated game design system to
understand a game’s codebase, generate new game code, and
evaluate its work. We argue that a new approach to software
engineering may be required in order for game developers to
fully benefit from automated game designers.

I. INTRODUCTION

Artificial intelligence has shaped the games industry for
decades. In some cases this takes the form of player-facing,
direct impact, such as providing intelligent controllers for in-
game agents [1]. In other cases this impact occurs behind the
scenes, by assisting in the development of games, improving
the tools and processes that developers interact with every
day [2]. The adoption of new AI techniques, however, takes
time. For example, MCTS [3] – which rose to prominence in
game AI research in the late 2000s and was instrumental in
AlphaGo’s defeat of Lee Sedol in 2015 [4] – has only been
used in a handful of commercial AAA games.

There are many reasons for this. In [5] Tidd and Trewhella
identify two key factors affecting the adoption of new tech-
nology: ‘comfort’ (how easy it is to integrate) and ‘credibility’
(how likely it is to help the business). In terms of ‘comfort’,
games tend to be developed on extremely tight schedules –
75% of respondents to the 2019 IGDA Developer Satisfaction
Survey report working overtime or ‘crunch’, showing how
game development is overstretched [6]. Thus, sparing workers
to acquire knowledge, or reshaping workflows to integrate it,
is likely to cause delays and increase pressure on workers,
at least in the short-term. In terms of ‘credibility’, being the
first to adopt a new technique is risky. If there are no or few
examples of the technique working in a commercial context,
the exact costs and benefits of using it in a commercial-scale
project are unknown. This is one of the reasons academics
face repeated calls to demonstrate their work in ‘real’ games.

Automated game design (AGD) research is the study and
engineering of AI systems that actively participate in the
design of games – both through creating, critiquing and editing
their core systems, and through creating content with an
understanding and appreciation for how that content relates
to the game design. AGD systems can act as autonomous or
co-creative partners in the design process [7], or take a more

passive role by performing services on request [8]. AGD has
the potential to greatly impact areas of game development that
have rarely been affected by AI up to this point. However, in
terms of ‘comfort’ and ‘credibility’, AGD in its current form
is unlikely to be adopted by the industry for some time.

To date, all AGD systems for digital games use game
description languages (GDLs), custom domain-specific lan-
guages for describing games. GDLs are usually interpreted
by a custom engine, allowing the AGD system to write, edit
and interpret simple high-level descriptions, while allowing
them to be played and tested as a full game. This has many
advantages: games are portable, because they are represented
as text files rather than fully compiled binaries or folders of
code; the design space is greatly reduced as the GDLs used are
much less verbose than a modern programming language; and
it makes collaboration between researchers easier by providing
a way to describe games not tied to a language, engine or
platform. VGDL is the best-known example of an academic
GDL, which has been used by multiple researchers [9].

Despite these advantages, GDLs may also be a barrier to
AGD’s long-term adoption by developers. Most modern game
development practices, from professional to hobbyist, do not
use the kind of high-level GDLs used by AGD systems. Tools
such as Game Maker or Stencyl de-emphasise programming
by using visual interfaces to help users describe games, while
most other game developers (especially larger AAA studios)
work directly in programming languages such as C# and C++,
possibly in conjunction with a development tool such as Unity
or Unreal. The closest analogue to a GDL is perhaps Puzzle-
script, a comparatively niche development tool which bears
some similarities with VGDL, although its rules definitions
are considerably more complex than VGDL’s. Overcoming
this difference is not simply a question of adapting research to
industry – building AGD systems that do not rely on GDLs is a
different research problem, and one which raises new questions
and opens new directions for AGD research.

In this paper we investigate the challenges of building AGD
systems that work directly with code, and envisage an AGD
system designed to be integrated with a large, existing game
codebase. Specifically, we explore how software engineering
decisions made during development impact how an AGD
system is able to analyse, generate and evaluate code. We do
this by examining the problem at the low-level of individual
lines of code and methods, and at the high-level of software
design patterns and engine structures. We argue that certain
patterns and approaches to writing software benefit code-based
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AGD systems, and that by identifying such patterns we might
bring about a new paradigm for software engineering in which
games are developed with a consideration for the needs of both
human and AI game designers.

The remainder of the paper is organised as follows: in II we
provide background on some aspects of software engineering
relevant to our paper; in sections IV to VII we highlight
several concepts in software engineering and explain how they
impact the operation of automated game design systems; in
section VIII we discuss existing work which approaches code-
based AGD; finally, in section IX we explore issues emerging
from this paper, and future research avenues this opens up.

II. BACKGROUND: CODE SPECIFICATION

Code specification (whether for a full program or a single
instruction) describes the expected behaviour of code, as well
as any guarantees made about the output of the code, or con-
straints placed on inputs supplied to the code. Preconditions
(logical statements which must hold before the execution) and
postconditions (logical statements that are guaranteed to hold
after execution) are examples of code specifications.

Code specification can be formal or informal. Formal spec-
ifications are usually mathematical or logical in nature, and
sometimes can be implemented in code. For example, program
logics such as Hoare Logic [10] allow the precise specification
of the behaviour of a command. Programming languages
themselves are a kind of formal specification – type systems,
for example, are a way of formally describing constraints on
data that is passed around and manipulated by code. While
type systems have become a very commonplace example of
formal specification, there are also examples of more unusual
features which allow for even more formal specification, such
as Haskell’s Liquid Types which allow additional constraints
to be attached to type declarations [11], or Rust’s Ownership
Types which constrain how threads can access a type, and
whether they have read or write access [12].

Informal specifications are usually expressed in everyday
language, although this in itself varies in formality. Many
programming languages have written documentation which de-
scribe instructions, keywords and library functions. Although
such documentation is often written precisely, we consider it to
be informal code specification because it is not mathematical
or rigorous and can be ambiguous and open to interpretation,
nor is it executable as part of a program. Certain areas
of research are dedicated to studying and formalising the
written specifications of programming languages and libraries
[13]. Inline documentation (e.g. comments on code) are also
informal specification, which may be more or less detailed
depending on the programmer and any enforced code style.
Less formal still are specifications which are not written at
all – the mental model constructed by a programmer as they
write code, or interpret and use code written by someone else.

As code specifications decrease in formality, they are in-
creasingly likely to be incomplete, meaning they do not
accurately describe every possible way the code can execute.
Sometimes this can lead to errors, such as a mismatch between

the written-language specification of code, and its actual
function. Even when correct, less formal specifications can
elide important details about the pre- or postconditions of a
code block. As we demonstrate in the following sections, if
an AGD system is to interact directly with a codebase, any
element of the code specification that is not accessible through
meta-programming (such as using reflection to examine the
return type of a method) is inaccessible to the system. This
is important because informal specifications are easier to read
and write than formal specifications, which makes them more
commonly used and as a result means that a lot of important
specification details are not available to an AGD system.

In many cases it is not possible to express code specification
in a given programming language. In the popular Unity game
engine, using C# as a main project language, the most formal
specification tool available to a programmer is its type system.
Some additional specification tools exist, such as the ability
to assert logical statements, but the specification expressed by
these features cannot be accessed via metaprogramming, and
often include informal elements (such as a written explanation
providing context to the assertion).

III. SOFTWARE ENGINEERING FOR AGD

In the following sections we discuss several aspects of
software engineering and design. In each case we introduce the
concept, provide a concrete example in the context of a game
codebase, and then illustrate how variations in implementation
affect the way an AGD might interface with the code. The
issues we discuss in this paper emerged from our work
developing a new AGD system which integrates directly with
existing codebases, and uses it to synthesise and evaluate new
code to solve game design tasks [14]. However, we present
our discussion here without reference to a specific system,
and instead discuss these emerging issues in the general case.

Our general-case refers to what we call ‘code-based AGD
systems’. Such systems are not defined by the AI techniques
they use, or the area of game design they operate on. Instead,
we define them as any AGD system whose main inputs and
outputs are program code, rather than abstract GDL represen-
tations. By input we mean information that the system uses
to generate and evaluate artefacts, and by output we mean the
artefacts produced by the design process. For example, in [15]
Cook et al describe a system which uses metaprogramming
to search a game’s codebase in order to generate new game
mechanics, which are output as Java code snippets. This would
constitute a simple example of a code-based AGD system.

Common features of such systems would include reflection
and dynamic code generation and execution. Reflection is the
ability of a program to examine the active codebase at runtime,
obtaining information such as lists of fields and methods in
classes, and performing actions like invoking methods and
changing variables. It is not necessary to understand these
concepts for the following sections; simply assume that the
AGD system in question can examine, extend and execute the
game’s codebase at runtime.



IV. ACCESSIBILITY AND ENCAPSULATION

Accessibility modifiers affect the way in which classes and
class members (e.g. fields and methods) can be accessed by
different parts of a codebase. For example, in C# a field with
the private modifier can only be accessed by code within
the file it is defined in. This allows programmers to control
how data is accessed across a project, or when a codebase
is integrated with another. In C# access modifiers are used
at compile-time to verify that code throughout the project
respects the stated access constraints.

From the perspective of an AGD system that works with
code, reducing accessibility can be seen as an advantage in
some cases as it reduces the size of the generative space that
the system is working in. Most game codebases will include
a lot of data in scope which is either not relevant to the task
the AGD system is solving, or is only relevant in extreme
cases. Such fields or methods complicate the generative task
by increasing the options a code generator has to choose
from with no equivalent gain in expressivity. Simply making
the field inaccessible to the code generator by giving it a
stricter accessibility requirement improves the chances that
code generated by the AGD system will be useful.

A common programming pattern is to encapsulate data
such as class fields by giving them restrictive accessibility
modifiers (such as private) and to supply access methods
instead, sometimes colloquially called getters (for reading
values) and setters (for writing to them). This has many
advantages, such as easily allowing refactoring of a variable
without changing any of the code that references it. In general,
reducing accessibility is seen as ‘safer’, because it limits the
extent to which data can be accessed or changed at runtime.

Though safe, encapsulation can complicate the generative
space for an AGD system. Encapsulating a primitive type field
such as an integer, for example, removes one field from scope
and adds two methods (one getter, one setter) to it. Let us
consider reading and writing with and without encapsulation,
using the example of an integer field, x, with getter GetX()
and setter SetX(int x).

In the case of reading, an AGD system might be interested
in generate an integer expression (in order to pass to a
method call, for example). In this case, there is little difference
between the encapsulated and non-encapsulated case: both
GetX() and the literal field access x are of integer type,
and thus both are equally easy to discover unless the system
distinguishes between method calls and variable reads.

In the case of writing, however, there is a distinct difference
between the two cases. Writing to a variable (e.g. x = 3) is
an assignment operation which has a return type equal to the
left-hand side (in this case, 3). Calling a setter method (e.g.
SetX(3)) is a method invocation and will usually have a
return of type void (it will not return anything). This means
that an AGD system will generate these expressions with
different likelihoods under different conditions. For example, if
the system is to generate an expression of type int it would be
valid to generate the expression x = 3. However, it could not

generate an invocation of SetX(3) though similar, because
the expressions do not have the same type.

In addition to being generated under different circum-
stances, the two expressions provide different amounts of
information to the AGD system, which might affect how well
it can use the expressions when generated. The assignment
expression is defined in the grammar, which means that when
the system generates such an expression the functional specifi-
cation of the code is known. By contrast, a method invocation
provides some functional specifications (see Type Signatures,
below) but the postcondition of the method invocation, namely
that a variable has had a new value written to it, is not stated.

The reason for this is that encapsulation adds additional
informal specification at the expense of losing some formal
specification. The formal specification provided by the known
properties of a field and its type are lost. On the other
hand, the added informal specification cannot be accessed
by the AGD system. For example, the naming convention
of prefixing a setter method name with Set indicates to the
programmer what the function of the method is, and may be
accompanied by written documentation describing the purpose
of the method. All of this constitutes informal specification,
which is very useful for a programmer. However, this cannot
be accessed or understood by metaprogramming, and thus this
specification is not useful for an AGD system.

V. METHOD TYPE SIGNATURES

A method’s type signature is a partial specification that
describes how a method can be invoked, what information
can or must be passed to it, and what type its return value
has. Consider a type signature of a method for addition:

public int Add(int x, int y)

The public keyword is an accessibility modifier, dis-
cussed above. The int type indicates that this method returns
an integer. Finally, Add denotes the method name, followed
by a sequence of arguments and their associated types. There
are other more complex language features that can appear in
C# type signatures, including the virtual modifier, generic
types, and modifiers such as ref and out.

A method signature is a kind of formal specification. C# ver-
ifies at compile time that invocations of this method subscribe
to the rules laid out by its type signature – that the arguments
passed to it comply with the given types, for example, and
that the result of invoking the method is treated as having the
same type as the method’s return type. Such information can
be used by the AGD system to understand where it can invoke
the method, and how to do so – for example, knowing what
expressions it must generate to pass as arguments.

There are many ways to write any given method, and
different implementations will have certain advantages. Effi-
ciency, generality, personal coding style, readability and ease
of maintenance are just a few factors that affect how a
particular piece of functionality is implemented in a codebase.
An implementation may also be affected by working in a team
– some larger development teams may have an overall code



style that they adhere to, for example. Figure 1 shows three
different implementations of a MoveObject method, which
updates the location of a game object.

In the first example the parameters passed are the new
location. In this case the location passed is absolute; it does
not depend on the object’s current location. In the first second
example, however, the parameters passed represent the change
in location; moving left subtracts from the current x co-
ordinate, whereas moving right adds to it. Finally, in the third
example a special enumerated type is used representing the
cardinal compass directions, and the method uses these to
move the object by one unit in the supplied direction.

Although these implementations are similar and the opera-
tion involved is quite simple, from the perspective of an AGD
system they are quite different. For example, in a game where
the game world is represented by a two-dimensional array (and
therefore indexed by non-negative integers) the first example
has an implicit, unstated precondition to avoid accessing the
array with negative indices:

x ≥ 0 ∧ y ≥ 0

Similarly, in the case of a grid-based puzzle game in which
an object can only move one grid space at a time, the second
example has an different unstated precondition:

−1 ≤ dx ≤ 1 ∧ −1 ≤ dy ≤ 1

In both cases there are additional preconditions related to
not moving out of grid bounds with too high a location value,
which we omit here for space. Note that although the accept-
able range of values for the first example’s arguments are much
smaller than the second example, the method signature for both
examples is identical – two integers, with a void return type.
If an AGD system were to invoke either of these methods,
it has no information suggesting how it should narrow its
input range. This means that it is quite likely to generate
code that causes runtime errors, especially if it is allowed to
generate literal expressions (i.e. if it is allowed to pass arbitrary
numbers as arguments to a method).

Let us now consider the third example. Although this
method has similar implied conditions on movement off the
edge of the grid (for example, moving west is not allowed
if the x co-ordinate is 0), its range of legal inputs is much
smaller than the other two examples, because its arguments
are expressed in terms of a custom type with just eight values.
The custom type adds additional formal specification to the
definition of the method. When an AGD system generates
an invocation of this method, it is far less likely to generate
arguments which are not legal.

However, this comes at a tradeoff. For example, in the first
two cases it is possible to move an object by more than one
grid space with a single invocation of MoveObject. Even if
it is not intended to be in the game, such a mechanic might
be something that would be desirable for an AGD system
to invent or discover. In the third case, this would only be
possible by invoking the method multiple times with the same

//Implementation 1
public void MoveObject(int x, int y){
this.x = x;
this.y = y;

}
//Implementation 2
public void MoveObject(int dx, int dy){
this.x += dx;
this.y += dy;

}
//Implementation 3
public enum DIR {N, NE, E, SE, S, SW, W, NW};
public void MoveObject(DIR direction){
switch(direction){

case N: this.y += 1; return;
// cut for brevity

Fig. 1. Three implementations of a method which moves a game object.

arguments – not only is this less efficient, it is less likely to
be generated by a system which synthesises code line-by-line.

Additionally, such custom types reduce the chance for
experimental combinations. For example, suppose an AGD
system generates a new player ability which invokes
MoveObject. In the first two examples where the arguments
are of type integer, there are likely many fields, methods and
literal values the system could try passing as an argument.
For instance, it might pass the player’s current health as an
argument, creating an ability that lets the player move further
the less damage they have taken. This is an unusual ability
that the system could discover by combining different kinds
of data of the same type. By contrast, in the third example
the system is less likely to find existing fields or methods of
type DIR, because the purpose of this custom type was to
formally describe a particular kind of specialised data relating
to direction. Thus, invocations of MoveObject are safer, but
less likely to lead to surprising results.

VI. POSTCONDITIONS AND SIDE EFFECTS

A postcondition is a partial code specification for a method
or block of code, and describes a set of properties which hold
after the code has finished executing. For example, the return
type of a method constitutes a postcondition describing the
type of the returned value. Postconditions can also be more
elaborate, describing the functionality of the code. For ex-
ample, a list-sorting algorithm has a postcondition expressing
how the returned list will be ordered. As with other kinds of
code specification, postconditions may be expressed formally;
written in comments or reports; understood informally by the
programmer; or not expressed at all.

A side effect of a piece of code refers to any effect caused by
executing it that is not part of its return value, and that persists
after the code has finished executing. This can be thought of as
any modification of the heap that outlasts the code’s execution.
For example, all of the examples in fig. 1 modify the fields
this.x and this.y, and are therefore side effects of the
method’s execution.

Both postconditions and side effects pose a problem for
AGD systems that work with code directly. Postconditions



are rarely formally specified beyond stating the return type
of a method. Based on our interviews with game developers,
and the authors’ own experience making games, elaborate
postconditions are at most expressed through informal written
documentation. This information cannot be accessed by an
AGD system. These more elaborate postconditions are critical
to reasoning about control flow and the wider structure of a
program, and without this information AGD systems can only
invoke methods based on their return type.

Similarly, side effects are almost exclusively expressed
through informal written specification. Side effects are com-
mon in imperative programming languages such as C#, be-
cause methods are often written specifically for this purpose
rather than transforming inputs. This causes two problems for
an AGD system. The first problem is that intentional method
invocation becomes difficult: since the system cannot know
the purpose of, or existence of, method side effects it must
invoke them blindly, without knowing what they are intended
to be used for. Consequently, the second problem is that
unintentional side effects as the result of executing code are
more common. An AGD system might invoke a method in
order to generate an expression of a particular type (based on
its return value) without realising that the method invocation
has additional side effects.

VII. SOFTWARE DESIGN PATTERNS

Design patterns are high-level approaches to structuring
entire codebases in order to encourage certain ways of writing
code, controlling data, or connecting information. Design
patterns are often developed to solve commonly recurring
problems in development. For example, object pooling is a
pattern which allows for a small collection of objects to be
continuously reused within an application, to avoid expensive
repeated instantiation. Game developers often use a wide
variety of software design patterns, whether working alone or
in large teams [16]. In this section we describe two examples
of a software design pattern, and show how they can have a
large impact on code-based AGD systems.

A. Model View Controller

The Model View Controller (MVC) pattern is a software
design pattern that separates an application into three distinct
areas of responsibility: the model, which defines the logic and
functionality of the application; the view, which defines how
the application’s current state is rendered; and the controller,
which defines how a user can interact with and change that
state [17]. This separation of concerns decouples two impor-
tant and highly variable parts of an applications (rendering and
input) from the less-variable core, which is very useful for
game development when an application is built for multiple
technology platforms, input devices, resolutions and users.

While the MVC pattern is useful for software developers in
terms of clear structure, the pattern also necessarily distributes
the code for important functionality to separate parts of the
codebase. The consequence of this is that the creation of a new
game object may require intervening in multiple areas of the

code. For example, adding a new item to an action-adventure
game will involve describing how to render the item and any
associated effects (in the view), describing what part of the
control scheme accesses and uses the items (in the controller),
and adding code describing the effects the item has on the
game’s systems (in the model).

The decentralisation of code caused by patterns like MVC
are natural for people to think in terms of, but complicate
AGD work by requiring multiple changes to the codebase in
order to add certain kinds of content (such as the new item
example above). It is possible to circumvent these problems
with additional bootstrapping from a developer, for example by
separating a design problem into subproblems which relate to
the model, view and controller components. This increases the
burden on the developer slightly, but perhaps more importantly
also increases the knowledge required by the developer to
work with the AGD system. This might limit who is able to
work with such a system, if for example they are not familiar
with the structure of the codebase.

B. Entity-Component Systems

The Entity-Component System (ECS) is a software design
pattern that constructs objects (or entities) out of one or
more components, smaller classes that represent a particular
capability or property [18]. A component is isolated from the
larger entity it is a part of, and communicates instead by
broadcasting messages which other components may receive,
respond to, modify or ignore. For example, a monster might
send a ReceiveAttack message to the player in an RPG,
with a damage value. The message is received by the Armour
component in the player entity, which modifies the damage
value by half and passes the message on. The message is
then received by the Health component which subtracts the
damage from the player’s health and prints a message.

ECS emphasises composition over inheritance – it encour-
ages the reuse of code, but not through direct subclassing. This
allows for ontologies with complex behaviour reuse, and as a
result ECS has become particularly popular with developers
of highly systemic or simulation-driven games, with notable
examples including Dwarf Fortress and Caves of Qud. ECS is
also popular in AAA game development, and many tools like
Unity use ECS as the basis for their engine.

ECS is an example of a design pattern that has benefits
for AGD systems. In fact, we believe ECS-driven games
such as roguelikes may be the best format with which to
explore code-based AGD research initially. There are two main
advantages ECS provides. First, the structure of game objects
is simple, robust and clear. In many ECS implementations an
object has no code of its own, and is simply defined as a
list of components. Since components are self-contained, an
object does not need to decide about control flow or method
invocation – at most, it may be required to set component fields
to certain starting values. This makes generating, comparing
and recombining objects very straightforward.

Second, the invention of new components is more tractable
than the open-ended task of generating code, because com-



ponents can only communicate with the codebase by sending
and receiving messages. The available message types are often
formally specified within the codebase through enumerated
types, and usually only carry small amounts of data. In
addition to being lightweight, messages are also less likely
to violate code specification compared to method invocation,
because the default response to a message is to ignore it.

ECS implementations vary, and not all uses of the pattern
will have the properties we describe above. However, by
enforcing a very simple code style (for example, requiring that
all messages are described in an enumerated type) we believe
an ECS driven-game is a perfect foundation on which to
build code-based AGD systems. This is especially encouraging
given that many common uses of ECS are for games with
high degrees of emergence and systemic complexity, which
is an ideal environment for an AGD system to work in and
potentially contribute novel and interesting design ideas.

VIII. RELATED WORK

In [19] the authors present Variations Forever, a system
which procedurally generates micro-games. Their overall aim
was to allow the player control over the rulesets generated for
these micro-games, in the style of Endless Web [20]. Variations
Forever is notable here for its use of answer set programming
(ASP) to define a rules space through constraints. While ASP
is a fairly complex programming paradigm that is not widely
adopted, the concept of interacting with an intelligent designer
by expressing limits and constraints is very appealing, as it
allows designers to express requirements without restricting a
system’s exploration of the rest of the design space.

In [15] the authors describe a system which can generate
new single-button game mechanics that help the player solve
a problem in a puzzle platformer. The game mechanics are
generated by searching the game’s codebase using metapro-
gramming to find variables that can be changed or toggled.
It then evaluates these mechanics by attempting to solve a
small challenge level which is considered unsolvable using the
game’s basic mechanics. If the challenge becomes solvable,
the system infers that the generated mechanic must allow the
player to change the game’s state to their advantage. This
technique of testing generated code against small test cases
with guaranteed binary properties (i.e. solvable/unsolvable) is,
we believe, a clear and effective way of evaluating code for
certain types of game content.

In [21] the authors describe Gemini, an AGD system which
uses a specialised DSL called Cygnus. A notable feature
of Gemini is its ability to work bidirectionally – it is able
to generate games from descriptions, and also able to offer
interpretations of games. A major problem for AGD systems
is contextualising their work [22], and this is amplified when
working as a contributor to a much larger game project. Gem-
ini shows how a system might be able to create explanations of
created artefacts, that potentially understand the broader goals
and creative direction of the game it is attached to.

In [23] the authors present Ludi, a boardgame designing
AI. The language used by Ludi is Lisp-like but primarily

inspired by a GDL called ZRF. Physical game design is a
more constrained task than digital game design because its
rules must generally be understandable and computable by
the players. Additionally, physical game descriptions typically
only describe rules, whereas digital games must also consider
other critical features such as rendering or interaction.

Finally, it is worth mentioning other paradigms for interac-
tive exploration of game designs. The Machinations frame-
work proposes an abstract representation for games with
a more natural set of interfaces and tools for design and
execution [24]. The framework has been very successful and
had direct impact on the games industry.

IX. DISCUSSION

A. A Need For Formal Specification

A common theme throughout many of our examples is
a tendency for people to rely on informal approaches, such
as written documentation or naming conventions, to convey
code specification. In many cases this results in code with
less formal specification, but an overall stronger structure
for a programmer. For example, in the case of encapsulation
and accessibility, getters and setters are considered safer than
public variable access. With an understanding of this conven-
tion, a programmer benefits from a safer codebase with little
impact to their workflow. However, an AGD system cannot
access informal specifications, which means that although
these approaches are better for people, they are worse for
automated analysis.

Programming language research is constantly developing
new tools and techniques to make it easier for programmers
to write correct, well-specified and efficient code. The history
of research in this area has given rise to type systems,
language annotations, and assertion statements. However, the
adoption of these ideas are slow, and the net benefits of formal
specification may not be clear. Modern programming practices
have ways to ensure code correctness, and these rely highly
on informal specification and human interaction – code review,
for example. More formal approaches are less common. While
we have showed that code specification can be conveyed to
an AGD system through changes in the structure of code,
we should also consider simple ways for game developers to
provide small amounts of formal specification for an AGD
system to use. In [14] we propose annotations as a good
starting point for this, as it is already a standard language
feature in many common programming languages.

B. Tractability Versus Surprise

A common tradeoff in generative and creative systems is
between control over the system’s generative space, and the
scope for surprise and novelty from the system. By constrain-
ing the generative space we may be able to efficiently remove
large amounts of poor-quality outputs, but in doing so we often
remove areas of the space that contain interesting, unusual
or creative artefacts as well. The use of game description
languages (GDLs), which we discussed in the introduction
to this paper, is another example of such a tradeoff. GDLs



provide control over what exactly an AGD system can change
within a game, but as a result they greatly restrict the kind
of games it can produce (often within well-explored design
spaces like arcade games). By contrast, being able to read, edit
and generate code expands the generative space to contain a
vast quantity of new and innovative games, but the size of the
generative space increases by such a huge factor that the ratio
of good games to bad becomes vanishingly small.

Some of the examples discussed in the previous section
contain suggested solutions which help provide more infor-
mation to an AGD system by limiting the space it works in.
For instance, in section V we gave an example of using a
custom enumerated type, rather than an integer, to describe
the direction an object moves in. In doing so, we make the
space the AGD system works in more tractable, reducing the
space of possible arguments from any valid integer value –
potentially 264 values – to just eight. However, we also limit
how MoveObject can be called, as it can no longer be passed
arbitrary integers. This removes the possibility of moving more
than one space at a time, teleporting, having movement be
affected by variables such as speed, or any number of other
innovative uses of the method.

One of the advantages of an AGD system working directly
with code is that it can connect unusual parts of a game’s
codebase together. In our prior work in [15], our AGD system
invented game mechanics that let the player control the game’s
physics system, allowing them to change the bounciness and
gravity of the level. This connection of two disparate parts
of the game’s codebase results in something interesting and
novel, but is only possible because of a lack of constraints.
This tradeoff is a key tension in the design of code-based
AGD systems, and will likely be a large area of future study
and work. We believe that it is not necessarily up to us to
decide on this tradeoff in advance; rather, it is important to
make it easy for developers to control this themselves.

C. Automated Discovery of Code Specifications

Inferring the specification of a piece of code automatically
is an open research question. Many tools have been developed
to tackle the problem, such as Facebook’s Infer [25], which
focuses on memory safety issues. Inferring the functional
specification of a piece of code – i.e. what it does – is a
less explored problem in this field, as it is a much harder task.
Some approaches use abduction in order to logically conclude
properties about the code, while other approaches use sampling
and testing to enable probabilistic inference.

The automatic discovery of functional specifications is a
problem that is unlikely to be solved in the near future, and
to our knowledge has not been attempted for code that works
in creative domains such as videogame design. Nevertheless,
we may be able to take inspiration from existing research,
as well as building small tools and extensions to focus on
extracting certain kinds of information. We have done some
early experimentation with a similar problem in a tool for
automatically analysing procedural generators, in which we
attempt to automatically estimate a safe upper and lower

bound for parameters by repeatedly testing different values
and catching errors [26].

Even simple features such as bounds estimations for pa-
rameters could greatly improve the ability of an automated
game design system to use methods and fields in a more
effective way – understanding, for instance, that the position
of an object can never exceed the dimensions of the array
representing the world. As we have shown in this paper, even
small amounts of information about the useful ranges for input
arguments or other simple restrictions on method calls can
drastically reduce the chance of generating non-compiling or
exception-throwing code, and focus the search on more useful
subsets of the generative space.

D. Experimental Programming Language Features

Our motivation for this work was to explore code-based
AGD systems that could be useful to game developers without
requiring large changes in their everyday game development
practice. However there is extensive research into new pro-
gramming paradigms, features and tools that could help us
achieve richer in-code interactions between an automated
game designer and a user. One example of this is refinement
types, introduced in [27] by Freeman and Pfenning. A refine-
ment type is a type with an attached predicate that must always
hold for any element of that type. Thus a refinement type for
an integer might restrict the integer to hold a non-negative
value. The intention behind refinement types is to enhance the
code specification already provided by type systems, as a way
to detect more errors at compile-time by formally expressing
tighter constraints on types in different parts of a program.

Throughout this paper we discuss how an increasing reliance
on informal specification poses a problem for AGD systems.
On possible solution to this, which we also explore in [14],
is the use of annotations to provide additional information
that contextualises methods and fields. A full refinement
types implementation would allow for a much wider variety
of predicates to be attached to typed expressions. However,
refinement types have seen little use in programming, with
Haskell’s Liquid Types being the only major implementation
in a popular language [11]. It might be possible to implement
a version of refinement types specifically for a particular
game engine, such as Unity, to provide more control over an
automated game designer.

E. ECS Roguelikes – A Next Step

As we discussed in section VII, although code-based AGD
is an intimidating research problem, some game structures and
formats may be more tractable than others. In particular, we
believe that entity-component systems offer a good balance
between code-based AGD and GDL-based AGD. They allow
us to write code-based AGD systems that work directly with
game code, while also benefitting from a tight code structure,
well-defined objects and components, and a simple and robust
message-passing system. We intend to explore this as a next
step in the area of code-based AGD, and we hope to see other
AGD researchers do the same.



X. CONCLUSION

In this paper we have presented an analysis of the impact of
software engineering decisions on code-based automated game
designers. We have shown that decisions about individual lines
of code, as well as high-level decisions about the structure of
entire projects, both have significant impacts on how well an
AGD system is able to understand, generate and evaluate code.
Although this paper only has space to contain a few such
examples, we have already identified several more, and we
anticipate that in the future it will be possible to compile a set
of best practices for developing games with AGD collaboration
in mind. These techniques would vary in effort required, and
in the benefits received, and would likely develop over time as
code-based AGD systems grow in complexity and we better
understand how designers use wish to use them.

As we develop more complex AI tools for automating parts
of the game development process, we must be aware of how
our work is likely to be applied in the wider world. In the
introduction to this paper, we quoted a study showing that 75%
of games industry workers reported experiencing crunch. We
believe that automation is as likely to expand this exploitation
as it is to alleviate it. While researchers cannot directly
control how our research is used, we can be selective in what
research we conduct, and how and to whom we communicate
our results. We believe it is important to center the worker,
their workflow and their needs when building commercially-
oriented AGD systems, to underline the importance of people
in the design process. It is important we approach research
into AI-assisted design with these issues in mind, in order
to ensure that new technological advances benefit everyone
in their pursuit of making games. Research impact is about
more than just technological or economic change, and we must
understand this as AI research becomes more influential.
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