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Abstract—Monte Carlo Tree Search (MCTS) has been shown
to be an effective algorithm for solving search problems in the
absence of heuristics. MCTS performs best in spaces where every
action has a significant impact on the outcome of the search.
In many domains, however, particularly single-player games,
many actions have little impact on the outcome, which makes
MCTS perform poorly without heuristic support. To address this
deficiency in such sparse-impact search problems, we introduce
MCTS with Reversibility Compression, or MCTS-R, which uses the
notion of action reversibility to compress MCTS trees as they are
constructed, without loss of information. This not only reduces
the memory footprint of the search tree, but also accelerates
search by preventing the duplication of already-explored states,
and increasing the attention paid to significant actions. We show
that our approach outperforms several comparable algorithms
for solving sparse-impact search problems.

I. INTRODUCTION

Developing game-playing AI agents is vital for a wide
range of game AI research, including procedural content
generation, automated game design and player modelling. It
is also important for game development too, as a tool for
testing and to provide characters to challenge, co-operate and
entertain the player. Many approaches to creating AI agents
for games leverage expert knowledge about the game being
played – for example, an agent that plays Starcraft 2 might
be provided with pre-set build orders. Expert knowledge often
focuses on simplifying the search space. A navigation mesh
is an example of such expert knowledge – rather than ask an
AI character to navigate around an unseen environment, we
provide a simplified map of the space so it can plan routes
around the space and play the game more effectively.

There are many situations where we might want an AI agent
to play a game it has never seen before. For example, a co-
creative tool that must play and evaluate a game design which
is constantly being changed by a human user; or in automated
game design, where an AI system must generate and test
games that have never been seen before. In such situations
we rely on general game-playing techniques. However, true
general game-playing is a serious challenge, and the most
effective approaches are often computationally expensive.

A commonly-used technique for general game-playing is
Monte Carlo Tree Search, or MCTS, a type of tree search
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algorithm. We define the problem of tree search as the search
for a path of nodes through a tree T = (V, e) beginning at
the root vertex of the graph and terminating at a leaf vertex.
Each leaf vertex l ∈ V is assigned a value s ∈ R, its score,
describing the quality of the path or the leaf node. Common
aims for search include finding a path to the highest-valued
leaf, or finding the shortest path to a maximally-valued leaf.
An example of the former might be achieving a high-score
in an arcade game, while an example of the latter might be
finding the shortest path to a winning position in Chess.

MCTS performs well even with little or no knowledge about
the game it is playing [4]. However, due to the nature of tree
search algorithms such as MCTS, it suffers in games where
there are many actions which do not advance the state of
the game towards success or failure. Physical games, such
as Chess, Go or Poker, tend to have very few such actions.
Most actions made by a player advance the game in some way.
Videogames, however, are rife with such actions.

In [8] we describe such actions as reversible actions. An
action a in a game state s is reversible if there exists a sequence
of one or more actions which, when taken after a, return the
simulation to a state equal to s under some equivalence relation
≡. In this paper we consider a class of tree search problems
with a high ratio of reversible to non-reversible actions in their
search space – we call such problems sparse-impact problems.
Examples of problems in this class include automating the
playing of many single-player games, including modern hit
games such as Monument Valley, and classic Atari games such
as Adventure, Montezuma’s Revenge and Miniature Golf, as
well as single-agent navigation tasks. We show that standard
MCTS performs poorly on such problems, and propose a novel
variant of MCTS, which uses action reversibility in order
to dynamically restructure the search tree as it is built. We
motivate and describe our algorithm, MCTS-R, and evaluate
it on a standard general game-playing test set, comparing it
against other MCTS approaches. We show that it outperforms
both in time ranking and search iteration ranking, and that it
achieves high tree compression without information loss.

II. BACKGROUND

A. Reversibility Compression

In [8] we describe action reversibility as a metric for
compressing state space graphs (SSG) for games. An SSG,
G = (S, t) is a directed graph in which the vertices, S,
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represent game states and the edges, t, represent actions that
transition the game between two states. Action transitions are
defined as a labelled relation on game states: given states
s, s′ ∈ S, (s, a, s′) ∈ t is a transition stating that taking the
action a in state s transitions the game to the state s′. Let A
be the set of all actions.

An action is reversible if all of its effects can be undone by a
sequence of one or more actions. More formally, there are two
types of reversibility. A transition (s1, a, s2) ∈ t is immediately
reversible if ∃a′.(s2, a′, s3) ∈ t such that s3 ≡ s1, where ≡
is an equivalence relation on game states. They use a strong
equivalence relation, where ∀s, s′ ∈ S, s ≡ s′ iff there is no
measurable difference between the data describing s and s′.
They further suggest that weaker equivalence relations could
be used for different applications of reversibility.

Some actions are not immediately reversible but can be re-
versed by taking multiple actions. A transition (s1, a1, s2) ∈ t
is said to be eventually reversible iff:

∃{a2, ..., an} ⊂ A, {s2, ..., sn+1} ⊂ S.
{(s2, a2, s3), ..., (sn, an, sn+1)} ⊂ t ∧ sn+1 ≡ s1

(D1)
The authors subsequently introduce the notion of a hyperstate
space graph (HSG). An HSG is constructed from an SSG
by merging together states in the SSG that are connected
together by reversible actions, a process we describe below.
The resulting states are called hyperstates. Given an SSG,
G=(S, t), its associated HSG is given by H=(H, c), where H
is a set of hyperstates and c is a labelled relation describing
action transitions on hyperstates, such that:

1) Each hyperstate h ∈ H contains a non-empty set of
states in G.

2) Each state g ∈ G appears in exactly one hyperstate.
3) Each hyperstate contains states that are mutually reach-

able via reversible actions. Formally, ∀h ∈ H and
∀g, g′ ∈ G, if g, g′ ∈ h, then there is a sequence of
reversible actions from g to g′, and from g′ to g.

4) The HSG action transitions are lifted from SSG actions
i.e., if (h, l, h′) ∈ c, then there exists g ∈ h and g′ ∈ h′

such that (g, l, g′) ∈ t, and vice versa.
For a fuller definition of HSG construction, we refer the

reader to [8]. The intuition behind reversibility and merging
states to construct HSGs is to reduce the significance of
reversible actions, which can easily be undone and thus are less
relevant than non-reversible actions, which must be committed
to permanently in any plan or path. The authors propose this
as a technique for automating game analysis, and suggest
applications to general game-playing as a point of future work
[11]. We build on this work here, showing that this graph
transformation can be applied to tree search and improve the
performance of search algorithms such as MCTS.

B. Problem Definition

We are concerned with a subset of tree search problems
which we call sparse-impact search problems. By sparse-
impact we mean that there is a non-empty subset of actions in

Fig. 1. An immediately reversible action in Sokoban.

the search space that are all reversible. The larger this subset
is as a proportion of the set of actions, the more sparse the
problem is considered to be.

As mentioned previously, a common algorithm employed
for tree search problems is Monte Carlo Tree Search (MCTS).
This has been shown to be effective at playing two-player ad-
versarial games both with and without game-specific heuristics
to guide play [4], and formed part of the AlphaGo system
which achieved superhuman play at Go [23]. MCTS has also
been used to play single-player games, including those with
stochasticity [19] and those without [21].

The standard MCTS algorithm has four stages: selection,
expansion, simulation and backpropagation. Beginning at the
root of the tree, the current search tree is descended using
a selection strategy until a leaf node is reached. This leaf
node is then expanded by generating its descendant nodes
(states reachable from this leaf node state by a single action).
One such descendant node is then selected for simulation,
which chooses actions according to a simulation strategy until
a terminal state is reached or a stopping condition is met.
Finally, the result of the simulation is backpropagated up the
tree, providing additional reward information which informs
the next round of node selection.

Some of the best-known applications of MCTS have been to
traditional boardgames such as Go and Chess. A commonly-
shared property of these games is that moves are usually irre-
versible, and in the case where reversible moves are possible,
they are unlikely to be encountered in optimal play. In Go, for
example, special Ko rules prevent players from repeating board
states indefinitely. In Chess, reversible moves are considered
sufficiently abnormal that a game ends prematurely in a draw
if the same game state is encountered three times. Thus, in
any state, most or all actions irreversibly progress the game
towards a conclusion. From the perspective of MCTS, this
means that the expansion step, in which new nodes are added
to the tree, will often be adding game states which have
not occurred yet in that branch of the search tree. Repeated
states can be encountered in other branches of the tree,
where the same state is reached through a different sequence
of actions. For tree search algorithms, this is often solved
through techniques such as transposition tables, as in [13],
and validating the correctness of paths that include repeated
states, as in [17].

In sparse-impact search problems there are many actions



Fig. 2. An eventually reversible action in Sokoban

which do not necessarily progress the system towards a
terminal state. By definition, if a reversible action a taken from
a state s transitions the system to a state s′, then at least one
action available in state s′ must be part of a reversible action
chain that leads to a state s′′ such that s ≡ s′′. In a search tree,
such as those constructed by MCTS, reversible action chains
can repeat indefinitely, causing the search process to revisit
duplicates of states that already occur earlier in the tree. Search
effort expended on expanding nodes with reversible actions is
less productive, therefore, as it leads to areas of the search
space that have already been explored.

Solving levels of the videogame Sokoban is an example of a
sparse-impact problem, for which determining the solvability
has been shown to be NP-hard [10]. In Sokoban, the player
controls a worker in a warehouse who must push crates
into certain configurations, usually in tight spaces that force
the player to consider the ordering of pushes. Moving the
player in Sokoban into an empty tile is an immediately
reversible action, as shown in fig. 1. Moving a crate may
be eventually reversible, as shown in fig. 2. It may also be
an irreversible move, e.g. pushing a crate into a corner of
a room is irreversible, because the player cannot get behind
the crate to push it back. Specialised MCTS agents have
been developed for Sokoban [18]. However, instead of solving
the level from the perspective of the player’s movements,
they instead solve an action-abstracted representation only
considering the movement of crates. This greatly simplifies
the problem, and in addition, the invention of this heuristic
requires expert human knowledge of the game in advance
of designing the solver. For many problem domains, such as
general game-playing [11] or automated game design [7], no
advance expert knowledge about the problem is available.

III. MCTS-R

In this section we describe MCTS with Reversibility Com-
pression or MCTS-R. This applies ideas from reversibility
reduction to compress the MCTS search tree as it is con-
structed. In doing so, we gain two advantages: first, we prevent
the repeated expansion of states that do not meaningfully
differ from previously-visited states; and second, we elide
less important actions so the search tree is focused on more
significant (i.e. non-reversible) decisions. This accelerates the
search process over sparse-impact spaces, i.e., for problems
with a large proportion of reversible actions.

Algorithm 1 Pseudocode for reversibility checking.
function CHECKCOMPRESSION(node)

topOfChain← node.parent
actions← [ ]
while topOfChain 6= nil do

if node.state in topOfChain.hashes then
break

end if
APPEND(actions, topOfChain.actions)
topOfChain← topOfChain.parent

end while
if topOfChain = nil then

return false
end if
COMPRESS(node, topOfChain, actions)
return true

end function

A. Tree Node Modifications in MCTS-R

In the basic MCTS algorithm, each node in the search tree
is typically represented by a simple data structure storing the
action taken to reach this node from its parent, as well as links
to child, sibling and parent nodes. Thus, starting at the root
of the tree and with the system in its initial state, each node’s
action can be applied to the state as the algorithm walks the
tree, in order to obtain the system state corresponding to any
leaf node in the search tree. An alternative approach is to have
each node record a copy of the game’s state, which trades off
memory usage for performance.

In MCTS-R we extend the tree node data structure in two
ways. First, rather than storing a single action, the node stores
a list of actions. Initially this list contains a single action,
as in a standard MCTS system. As the tree is compressed
during search, by merging together nodes connected through
reversible actions, some nodes will have additional actions
added to their list. These actions are added to maintain an
invariant relationship between a node, s, and its parent, sp,
namely that applying the list of actions in s, in sequence, to
the system state represented by the node sp, will yield the
system state represented by the node s.

The second modification to the tree node is a list of system
state hashes. This list initially has one element: a hash of the
state represented by the node. Under certain conditions, some
nodes are removed from the search tree and merged into other
nodes. These removed nodes add their hashes to the hash list
of the node they merge into. These hashes are used to check
for further compression opportunities later in the search. We
explain the function of both the action list and the state hash
list in the remainder of this section.

B. Reversibility Checking

MCTS-R modifies the MCTS algorithm during the Selection
phase, in which the algorithm traverses the tree, selecting
nodes based on a tradeoff of their average score and the
number of times they have been selected previously. Each



Algorithm 2 Pseudocode for reversibility compression.
function COMPRESS(node, tgt, ac)

DETACH(node)
for child in node.children do

if node.state = tgt.state then
COMPRESS(child, tgt, [ ])

else if node.state in tgt.hashes then
APPEND(ac, node.actions)
COMPRESS(child, tgt, ac)

end if
modified← False
for tChild in tgt.children do

if child.state in tChild.hashes then
if node.actions < tChild.actions then

tChild.actions← node.actions
end if
COMPRESS(child, tChild, [ ])
modified← True

end if
end for
if not modified then

for tChild in tgt.children do
if child.state in tChild.hashes then

APPEND(ac, node.actions)
COMPRESS(child, tgt, ac)
modified← True

end if
end for

end if
if not modified then

DETACH(child)
ATTACH(child, target)
UPDATENODE(child, node, ac)

end if
end for

end function

time a node is selected, MCTS-R performs a reversibility
compression check on the selected node. Algorithm 1 shows
an outline of this process. Formally, for a node s, let h(s)
be the hash of the state represented by s, and let H(s) be
the list of hashes contained within s as described above. Let
the antecedent of a node sn be denoted sn−1. In order to
check whether a node sn can be compressed, we search every
antecedent node of sn to see if its hash is contained within
any of the state hash lists maintained by the antecedent nodes:

∃i.0 ≤ i < n ∧ h(sn) ∈ H(si)

The compression check aims to establish whether any of
the node’s antecedents contain a state hash that is the same as
the selected node’s state hash. Beginning at the parent of the
node being checked, we iteratively check the selected node’s
hash against the list of hashes in each antecedent node. If no
matches are found, then the compression check fails. However,

if some antecedent node is found to contain the same hash as
the node being checked, then we can compress the tree.

To more formally describe this check, and to contextualise
it in the terms of reversibility compression, let T = (S, t) be
a search tree as defined above.

Let sn ∈ S be a node in a search tree which is being
checked for compression, and let si ∈ S be some antecedent
node in T where i < n. Thus, there is some sequence of
actions that transforms si into sn, which is equivalent to
walking the tree. More formally:

∃{ai, ..., an−1} ⊂ A, {si, ..., sn} ⊂ S.
{(si, ai, si+1), ..., (sn−1, an−1, sn)} ⊂ t

Suppose that sn and si are shown to be equivalent under some
relation ≡. Then we have (sn−1, an−1, si) ⊂ t. With this new
piece of information, we can restate the above as follows:

∃{ai, ...an−1} ⊂ A, {si, ...sn} ⊂ S.
{(si, ai, si+1), ..., (sn−1, an−1, sn)} ⊂ t ∧ si ≡ sn

We can see here the structural resemblance between this
statement about a search tree, and the definition of eventual
reversibility in Definition D1. Thus, if we establish that a
selected node is equivalent to some antecedent node in the
search tree, we have shown that it is part of a chain of
eventually reversible actions.

C. Reversibility Compression

When a cycle of reversible actions is detected at node sn
in the tree, we attempt to compress the cycle into the node
nearest the root of the tree, si. Given a search tree T = (S, t)
as defined earlier, let T [s] denote the subtree of T rooted at
s ∈ S. Reversibility compression transforms si into a new
node s′i with the following postconditions holding:
• T [s′i] = T [si] \ {si+1, ..., sn} i.e., search tree nodes
{si+1, ..., sn} are no longer in the tree.

• The node s′i contains the hashes of the states
{si+1, ..., sn} in its hash list.

• Define D, the set of dangling nodes, as the set of descen-
dant nodes of si+1 that are not in the reversibility chain,
i.e. T [si+1]\{si+1, ..., sn}. Each node sd ∈ D is inserted
into the new subtree T [s′i] such that its relationship to s′i
mirrors its previous relationship to its nearest antecedent
in {s1, ..., sn}.

To more formally expand this last point, define the set of
nodes in the reversibility chain as Sc = {si+1, ..., sn}. For any
c ∈ Sc, define the detached subtree T d

c as T [c] \ Sc. When
a given descendant of this chain node, sdc ∈ T d

c , is reinserted
into the search tree at T [s′i], the depth of sdc relative to s′i is
the same as its previous depth relative to c. To ensure this,
MCTS-R steps through the detached subtree and check each
node in turn, reinserting it into the tree if no node already
exists with the same state hash, or skipping it if an existing
node is found at the same depth in T [s′i].

Algorithm 2 shows a pseudocode outline of the compression
process. Beginning at the last node in the reversibility chain –
sn in our running example – we iteratively detach the subtree



rooted at this node, T [sn], from the larger subtree rooted at
si. We add the hash of sn to the list of hashes in si, since
this node now represents all of the compressed states. MCTS-
R then walks the detached subtree in a breadth-first fashion,
attempting to reinsert each node into the search tree, rooted at
si. This process may recurse in order to insert descendants of
sn into the search tree relative to descendants of si.

When reinserting a node, sj , into the subtree rooted at
some descendant of si, sin, if we find that there is no existing
node at this depth with the same hash as sj , we can insert
sj and all of its descendants as a whole new subtree that is
a direct descendant of sin, as it represents paths which are
not represented here. Alternatively, if a node with the same
hash exists already as a descendant of sin, or a node contains
the inserted node’s hash in its hash list, then we recurse the
insertion process and attempt to reinsert sj’s descendants into
sin or one of its descendants, according to conditions outlined
in Algorithm 2.

By performing this compression, we are exploiting the fact
that any of the states {si+1, ..., sn} are reachable from one
another without permanently altering the game’s state. Thus,
by reaching the first state in the cycle, si, any of these other
states are trivially accessible. The search process should only
be concerned with actions which are not currently known to
be reversible, namely the nodes in {si+1, ..., sn} \ T [si+1].
Hence, we insert them in the tree as relative descendants of
si instead, and allow the algorithm to treat them as if they are
immediately accessible from si.

This transformation of the tree removes many nodes from
the search tree that are irrelevant, and thus gives greater
prominence to the remaining nodes which represent areas of
the search space that are either more significant to the outcome
of the search, or less well explored (since they may prove to
be reversible with more search effort). However, by removing
and transposing nodes in the search tree, we are losing crucial
information about the structure of the search space, which
makes it hard to reconstruct paths from root to leaf after the
algorithm is complete. This necessitates a maintenance step to
update information in the tree, which we describe below.

D. Maintaining Action Lists

Recall that in an ordinary MCTS search tree, a node s
in a tree contains an action a such that taking that action
in its antecedent state, s′, transitions the system to the state
described by s. In other words, given a tree T = (S, t),
(s′, a, s) ∈ t. However, restructuring a tree in the way
described above would break this invariant for any nodes
which are transposed as part of the compression process.

In order to maintain this relationship between nodes and
their parents, we earlier stated that we extended the description
of a search tree node so that it maintains a list of actions rather
than a single action. When we restructure the tree, we update
this list for affected nodes so that it always reflects the shortest
known path to reach the current node from its new immediate
parent. To perform this update, we calculate an updated action
list during the compression phase.

Let us return to our running example of a search tree
T = (S, t), containing a set of nodes in a reversibility
chain, {si, ..., sn}, where si is the compression target, and the
remaining nodes, Sc = {si+1, ..., sn}, are to be compressed.
For any sj ∈ Sc, the forest (a collection of trees) T [sj ] \ Sc

will be reinserted into the search tree with si as the new parent.
Each child of sj will prepend to its action list a new list of
actions, C, defined as follows:

C = {a | ∀p, q.i ≤ p, q ≤ j ∧ (sp, a, sq) ∈ t}

That is, C is the list of actions required to walk the original
search tree from si to sj . This new action chain is only
prepended if the node is reinserted fully into the search tree
underneath si. If a child of si already exists representing the
same system state, we compare the existing child’s action
chain with the new node’s action chain, and only replace the
action chain if the new one is shorter, since this describes a
shorter sequence of actions that achieves the same outcome.
With this final modification, the tree is now restructured in
such a way that search can resume. MCTS-R has removed
all nodes that were superfluous to the search process; and has
updated action chains and hash lists to reflect the alterations
made to the structure of the tree.

IV. RELATED WORK

A. Abstraction and Refinement

Abstraction and refinement is an optimisation technique that
accelerates searches on graphs by constructing an abstracted
version of the base graph, performing search on the abstracted
graph form, and then refining the abstract solution into a full
solution that can be applied to the base, original graph [15].

Graph abstraction and refinement has been applied to games,
particularly to the problem of pathfinding. In [25] Sturtevant
et al present an abstraction technique in which a game space
is overlaid with a grid, effectively abstracting the continuous
space to a simpler representation. A given point within the
game world is mapped to the nearest point on the grid. This
approach has been extended to suit many different pathfinding
scenarios [5], [14], including abstracting directed graphs and
incorporating limited actor state representation, as in [12].

The process of compressing an MCTS tree as it is con-
structed can be thought of as a process of abstraction. How-
ever, unlike classical approaches to abstraction and refinement,
the compressed MCTS tree is an end in itself – it does not
require refinement to be useful, and is designed to be used,
analysed and studied in its compressed form. We are primarily
interested in the process of building the abstracted graph and
the nature of the abstracted graph, rather than the utility of
the abstraction in querying the original graph. Some results
from abstraction and refinement literature may be applicable
to improve the MCTS-R compression process in the future,
such as [2] which parallelises the decomposition of strongly
connected components. Such an approach could make tree
compression more efficient, but it would need to be studied in
the context of trading off exploitation (to avoid compressing
parts of the tree which are not being explored anyway).



B. Sparse-Impact Game Playing

In [18] the authors describe two systems for solving
Sokoban levels, using MCTS and IDA*, a variant of A*
search. The authors augment their MCTS approach with
optimisations including cycle detection, whereby a table of all
searched states is maintained, and if a new child node would
cause a cycle in the current branch, it is not generated.

Cycle detection is similar to the identification of reversible
actions in MCTS-R. However, our approach differs signifi-
cantly because of the compression step which follows the
detection of a reversible action. By restructuring the search
tree, we dramatically reduce the number of nodes in the tree;
elevate more significant actions so they are closer to the root;
and make the detection of reversible actions more likely in
other branches by maintaining hash lists of detected cycles.

Transposition tables are a commonly-employed technique
in AI for game-playing, where game states are recorded and
information about them reused when they are encountered
subsequently in the search process [13]. Transposition tables
have been applied to MCTS, such as in [6] and [16] where it
is used for playing Go. In these applications, backpropagation
updates a transposition table, rather than a node in the search
tree, so the results of a simulation are reused anywhere in the
search tree this state occurs. Our approach differs by focusing
on reversible chains within a subtree, rather than single-state
repetition across the tree breadth, and by restructuring the tree
itself rather than abstracting collected information.

State and action abstraction are common techniques for
improving the performance of tree search algorithms on large-
scale problem domains, by treating clusters of states and
actions as single units [9]. [1] show that MCTS can be adapted
to search through abstracted domains and even outperform
MCTS applied to the original non-abstracted problem. These
approaches are powerful, but rely on pre-existing abstractions
of the problem at hand.

V. EVALUATION

MCTS-R is designed as a general-purpose algorithm for
sparse-impact search problem. Common test domains for stan-
dard MCTS include Chess and Go, however for the purposes
of deterministic, single-agent search, a classic problem is the
puzzle game Sokoban, which we use here as a sparse-impact
problem domain. Sokoban is a single-player puzzle game in
which the player controls a warehouse worker who must push
a series of crates onto goal locations. A crate can only be
pushed, not pulled, and multiple crates cannot be pushed in a
row. A puzzle is solved when every goal location is covered by
a crate. Sokoban is NP-Hard [10], and is a common baseline
game used to test general game-playing agents [11]. We used
the Microban collection of 155 Sokoban levels. This test set
is used both in [18], and as a source of Sokoban levels in
the General Video Game AI Competition [20]. It includes a
range of puzzles of varying sizes and difficulties that test a
wide range of Sokoban solving techniques. The simplest level
in the set can be solved with a single move (the only available

move instantly solves the level) while the level with the longest
optimal path requires a minimum of 1003 moves to solve [24].

We evaluate MCTS-R by comparing its performance against
three MCTS configurations, described below, on the Microban
test set. We use these to highlight the difficulty with which
standard MCTS solves sparse-impact problems, and to com-
pare certain optimisations with our approach. We evaluate all
four configurations in time-limited and computation-limited
experiments. Additionally, we compare the structure of the
search trees generated by all four approaches to show the
impact of MCTS-R’s compression of the search tree, and con-
sider the differences in the quality of the solutions generated
by the two best-performing configurations.

A. Experimental Setup

We compare MCTS-R against other MCTS configurations
by studying its performance under two conditions: bounded
by wall clock time, and bounded by the number of iterations
of the search. In both cases our measure of success is the
number of levels from the test set for which a solution of any
length was found. We also record the unique state ratio, which
we define as the number of unique states encountered when
building the search tree, divided by the number of nodes in the
search tree at the end of the search. This allows us to contrast
the repetition of states in standard MCTS with the effect of
tree compression in MCTS-R.

We assess the algorithms on both time and iterations be-
cause the reversibility checking and compression processes
used by MCTS-R are more computationally intensive than
standard MCTS. This means that comparing the performance
on the same number of iterations would not give a full picture
of the differences between the algorithms. Note that if MCTS-
R compresses the tree during Selection, it skips to the next
iteration without Expansion or Simulation, as the compression
may require the Selection process to be restarted. However, we
consider an iteration to have taken place, for the purposes of
the iteration-bounded experiments.

In addition to MCTS-R, we ran experiments on three MCTS
variants. The first configuration is standard MCTS, with no
adaptation. The reward for a game state, which the algorithm
calculates at the end of the Simulation step, is equal to the
game’s score – in the case of Sokoban, the score is equal to
the number of crates on goal tiles divided by the total number
of goal tiles, or the maximum integer value if complete. This
reward is based on the GVGAI Competition [20].

In the second configuration, MCTS+N, we add a small
novelty component to the reward for the Simulation step.
During this step, we record the number of states seen that
have not been encountered during the construction of the
search tree. We then add a small factor to the reward based
on the proportion of states seen in the simulation that are
new: 0.9 × (c/t) + 0.1 × (n/s), where c is the number of
covered goal tiles, and t is the total number of goal tiles, n
is the number of novel states encountered during simulation
(i.e., that do not exist in the search tree) and t is the total
number of states encountered during the simulation. This is



Fig. 3. Iteration-limited run on the Microban test set.

a common extension made to MCTS algorithms for general
game-playing, as it rewards the expansion of search tree nodes
that explore new areas of the search space. We would expect
this to improve performance in a sparse-impact environment,
as it would reward states which avoided repeated actions and
explored new parts of the search space.

In the third configuration, denoted MCTS+ND, we augment
the Expansion step of MCTS, where new nodes are added to
the search tree. If a new node is created during Expansion,
but its state already exists somewhere else in the tree, we
simply do not add the state to the tree. This means MCTS+ND
can never revisit a state it has already encountered. This
optimisation is employed in [18] as a potential improvement
for solving Sokoban specifically.

All four algorithms - MCTS-R and the three MCTS config-
urations - are run with a simulation depth capped at 50 moves,
and a C value, which is used in the standard UCT evaluation
in the Selection step, set to 1. This is recommended for many
single-player tasks [22] and we confirmed experimentally that
it gave best results for all configurations. Each configuration
is an average of five runs. All experiments were implemented
in C#, and run on a 2018 Macbook Pro, using a 2.6GHz Intel
Core i7 processor, and 16GB of DDR4 RAM.

B. Results

1) Iteration-Limited: Figure 3 shows the results of running
all four configurations on the Microban test set, limited by
the number of iterations the algorithm is run for. We can see
that both MCTS and MCTS+N struggle to solve more than a
few cases regardless of computation limits, while MCTS+ND
performs far better. However, MCTS-R clearly outperforms all
three configurations, solving more than twice as many levels
as MCTS+ND in each test.

2) Time-Limited: Figure 4 shows the results of running all
configurations on the same test set, limited by wall clock time.
We chose a range of time limits, with the shortest being close
to a real-time interactive response (0.1 seconds) and the upper

Fig. 4. Time-limited run on the Microban test set.

bound being 10 seconds. As with iteration-limiting, we can
see that MCTS and MCTS+N are unable to solve many levels
even as the limit scales. MCTS+ND performs well again, but
MCTS-R once again outperforms it, solving 1.8 times as many
levels at lower iteration counts, and over double at the highest.

3) Unique State Ratio: Table I shows the ratio of unique
states to the size of the final search tree for the four configu-
rations, expressed as an average of all data in each experiment
category. To calculate this, during each search process we
record the number of unique search nodes added to the tree,
and then divide this number by the size of the tree at the end of
the search. We can see from table I that MCTS and MCTS+N
have ratios below 0.02 for all experiments. A ratio of 0.02
means that fifty nodes must be added to the tree in order to
encounter a novel system state.

MCTS+ND always has a ratio of 1, because each state is
only ever encountered once, since the algorithm does not allow
duplicate states. MCTS-R, however, achieves ratios of higher
than 1, managing over seven times the ratio of MCTS+ND in
one case, and over 1,000 times higher than standard MCTS.
This means that for every node in the final search tree, MCTS-
R has encountered seven unique states on average. We believe
this efficiency is a factor in the success of the algorithm.

4) Solution Lengths: Finally, we compared the solutions
found by both MCTS-R, and the next best-performing con-
figuration, MCTS+ND in the most successful experimental
setup: time-limited, 10-second cap. We considered only levels
for which both algorithms found a solution, and compared
the lengths of the solutions (in Sokoban, a shorter solution
is better). We divided the length of MCTS+ND’s solution by
MCTS-R’s solution to derive a relative scale. The average of
these scales is 0.93, meaning that, on average, the solutions
found by MCTS+ND are slightly shorter than MCTS-R’s. The
highest and lowest ratios were 1.40 and 0.27 respectively,
showing that both algorithms were capable of outperforming in
terms of solution quality. In general, MCTS+ND outperforms



System Setup Unique States Per Tree Node
MCTS Iterations 0.0066

MCTS+N Iterations 0.0092
MCTS+ND Iterations 1

MCTS-R Iterations 7.11
MCTS Time 0.014

MCTS+N Time 0.017
MCTS+ND Time 1

MCTS-R Time 6.33
TABLE I

AVERAGE NUMBER OF UNIQUE STATES ENCOUNTERED PER NODE IN THE
FINAL SEARCH TREE, ACROSS ALL EXPERIMENTS.

MCTS-R on levels which involve many ‘dead-end’ actions
which render the level unsolvable, while MCTS-R outper-
forms on levels with complex optimisations and shortcuts.
MCTS+ND’s approach of never duplicating a node may help
it avoid large areas of ‘dead-end’ states by only considering
them once. We will investigate this as a point of future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we introduced Monte Carlo Tree Search
with Reversibility Compression, or MCTS-R. We showed that
standard MCTS approaches perform poorly on sparse-impact
problems, where many actions have no permanent impact
on the state. By incorporating reversibility compression and
adapting it to MCTS, MCTS-R can dynamically compress
search trees to reduce the significance of reversible actions,
with no loss of information.

We showed that MCTS-R outperforms three variants of
MCTS on a standard test set of sparse-impact problems,
both in wall-clock times and computation required. We also
showed that MCTS-R’s compression allows it to produce
more efficient, compact search trees. In the future we aim
to study how transposition tables might enable the benefits
of compression to be distributed more broadly across the
search tree. We also intend to apply the technique to creative
domains such as automated game design. Unlike general
game-playing, in which games can be relied upon to be well-
formed, automatically designed games are often disfunctional
in some regard. We believe that MCTS-R will be effective in
rapidly evaluating such games, as it can automatically detect
and abstract away uninteresting actions, even with no prior
knowledge about the domain.
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