
Playable Experiences at AIIDE 2015
Michael Cook

AIR Lab, Falmouth University
mike@gamesbyangelina.org

Squirrel Eiserloh
SMU Guildhall

squirrel@eiserloh.net

Justus Robertson
R. Michael Young

North Carolina State University
{jjrobert,young} @ncsu.edu

Tommy Thompson
James Tatum, Neall Dewsbury

Table Flip Games /
University of Derby

tommy@t2thompson.com

David Churchill
Lunarch Studios /

University of Alberta
dave.churchill@gmail.com

Martin Cerny
Charles University in Prague

cerny.m@gmail.com

Sergio Poo Hernandez
University of Alberta
pooherna@ualberta.ca

Vadim Bulitko
University of Alberta
bulitko@ualberta.ca

Abstract
This paper describes entries to the third Playable Expe-
riences track to be held at the AIIDE conference. We
discuss the five entries accepted to the track for 2015,
as well as the ongoing development of the track as part
of AIIDE.

Introduction
The AIIDE Playable Experiences track began as a means to
celebrate and present games which demonstrate compelling
uses of AI, and perhaps AI research, within their design.
Now in its third year, the track is an opportunity to reflect on
how researchers can embed their work in playable games,
and the many different ways this can manifest itself. Its in-
tentionally broad reference to ’playable experiences’ is a
respectful nod to the breadth and diversity of the modern
games industry and its surrounding communities and move-
ments.

In the time since the last Playable Experiences track we
have seen the founding of both the Procedural Generation
Jam and the AI Jam, events which attracted researchers and
practitioners focused on the use of AI techniques within
games. Dagstuhl Seminar 15051 also took place earlier this
year, bringing together a group of games researchers in an
event which had a strong focus on implementing ideas and
led to the creation of several game prototypes. The relation-
ship between games research and game development is shift-
ing, and the Playable Experiences track serves as a good way
to celebrate and record this.

The 2015 AIIDE Playable Experiences track, chaired by
Michael Cook and Squirrel Eiserloh, includes five accepted
entries. This paper highlights each entry with a short sum-
mary, briefly summarises the criteria used for accepting en-

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tries, and poses some thoughts for where the track might
progress in the future.

Evaluation Criteria
As the breadth of game AI research and practice has ex-
panded in all directions, so naturally has the variation in
scope and focus of Playable Experiences submissions. The
selection process has accordingly become more subjective,
as direct comparisons between entries are apples-to-oranges.
Evaluation of submissions for the track has therefore fo-
cused on the articulable and demonstrable innovation in the
approach and use of AI as it relates to the playable experi-
ence, as well as the level of completeness, playability, and
accessibility of the experience itself.

Accepted submissions for 2015 include:
• Base Case, a top-down sneaking game by Justus Robert-

son in which the world is generated from a plan-based ex-
perience manager, where the player directly manipulates
the planner’s underlying state via in-game mechanisms;

• iGiselle, an interactive narrative by Sergio Poo Hernandez
in which the player influences an AI experience manager
and branching narrative choices by assuming dance posi-
tions perceived by the Microsoft Kinect;

• Prismata, a unique commercial turn-based digital strategy
card game in development by Lunarch Studios, submitted
by lead AI programmer Dave Churchill, featuring sophis-
ticated AI opponents navigating a large state-space;

• Sarah & Sally, a puzzle-platformer by Martin Cerny with
a cooperative AI sidekick that telegraphs its search state
in-game, set in a problem space designed to highlight and
simplify AI search while creating perceived complexity
for the human player;

• Sure Footing, an infinite runner building on rhythm-based
approaches to real-time procedural level design.

Proceedings, The Eleventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15)

227



The following sections have been provided by the authors
of each experience, and provide highlights and insights into
the role of AI in that experience and its development.

Base Case

Figure 1: A screenshot from Base Case.

Base Case is a top-down sneaking game where the player
must free their captured comrades from a military compound
while avoiding detection by the guards that patrol the base.
What makes Base Case unique is that the game is generated
using a plan-based experience manager’s declarative state
transition system. This allows the experience manager to
control not only the behavior of the game’s NPCs but also
the configuration of the procedurally generated game world.
In order to escape the base for good, the player must find a
computer console that allows them to modify the underlying
declarative state and open an otherwise hidden exit.

Base Case’s gameplay begins with an initial game world
state specified in PDDL (McDermott et al. 1998). Using this
specification, a plan-based experience manager (Robertson
and Young 2014) creates a declarative state transition system
and plan to guide the game’s NPCs. Based on this state tran-
sition system generated by the experience manager, a pro-
cedurally generated content pipeline creates an interactive
game world and populates it with game objects. The PCG
pipeline is implemented with Unity which instantiates and
destroys game objects based on the declarative state.

This declarative experience manager and PCG pipeline
game engine is called the Unity General Mediation Engine
and is used to create Base Case. Base Case is a sneaking
game where the player moves through rooms patrolled by
enemy NPCs in search of a prisoner. When the prisoner is
found, the two must escape the base. When the player es-
capes the base with the rescued prisoner, the game restarts in
a new configuration. This new configuration is one of several
pre-authored PDDL problems the system chooses between
on initialization. The game continues to repeat as the player
explores new configurations of the base.

In order to finish the game, the player must find a special

world object and use it to modify the underlying declarative
state. In every world state configuration there is a computer
that allows the player to directly manipulate the truth value
of fully ground atomic formulae describing aspects of the
world’s state. In order to open the true exit and escape the
base for good, the player must find the computer system and
use it force the underlying world state into a configuration
that will allow the player to access the hidden exit. Once the
player escapes from the secret exit, the game stops repeating.

iGiselle

Figure 2: A photograph of iGiselle being played on a Kinect.

iGiselle is an AI-managed interactive narrative inspired
by the Romantic ballet Giselle. In iGiselle the player takes
control of Giselle, a young ballerina, and experiences the
interactive narrative through a series of still images, voice
overs and music. To further immerse the player in the world
of ballet, a traditional game controller was eschewed in favor
of having the player indicate his/her narrative choices by as-
suming dance positions which are perceived by a Microsoft
Kinect connected to a PC.

The game utilizes PACE (Player Appraisal Controlling
Emotions) as its AI experience manager. PACE determines
the next narrative event to show to the player in an at-
tempt to keep him/her on an author-specified target emo-
tional curve. PACE models the player’s emotions by deter-
mining the player’s playstyle from the actions he/she has
taken in the game so far. Candidate narrative events that
PACE selects from are computed automatically by the Fast
Downward AI planner as the narrative domain is encoded in
the Planning Domain Description Language (PDDL).

The multimedia content for the game was developed in
two phases. First, working with writers, a non-linear nar-
rative graph was developed which allows the player to ex-
plore various narratives via choices made during the game.
The graph contains 102 narrative events and 4 choice points,
resulting in 9 distinct narrative trajectories and 10 possi-
ble endings. In phase two, developers worked with ballet
dancers and choreographers, voice actors and recording en-
gineers, photographers and graphic artists to create 162 cell-
shaded images and 270 lines of studio-recorded voice overs.

The game interface was coded in C# and interfaces with
the Kinect framework. A pose recognition module was im-

228



plemented within the framework to read in the player’s poses
and interpret them as his/her narrative choices. In total, 44
people were involved in iGiselle production which took ap-
proximately a year and a half.

Prismata

Figure 3: A screenshot of the Prismata play area.

Prismata is a fast-paced hybrid strategy game from Lu-
narch Studios which combines elements from real-time
strategy games, collectible card games, and tabletop games.
In Prismata players build up an economy, spend resources
to buy armies, and unleash attacks on their enemies while
simultaneously defending incoming enemy barrages. Think
“turn-based StarCraft”, but without a map, or Hearthstone
with workers and build orders instead of decks. Games in
Prismata last just a few minutes, and have infinite replay
value due to the randomly selected units up for purchase at
the start of a game. Each game there are new units to con-
struct, new build orders to discover, and entirely new strate-
gies to unleash on your opponent.

Several challenges are faced when creating AI systems for
modern online strategy games like Prismata:
• Strategy games often have enormous action spaces, with

millions of possible action combinations to consider on
any given turn.

• Different difficulty settings must be offered so that players
of all skill levels can play against and enjoy their experi-
ence with the AI.

• As new units are frequently added to the game, the AI sys-
tem must be robust enough to handle design and balance
changes made to the game over time.
To take on these challenges, the Prismata AI system uses

Hierarchical Portfolio Search (HPS), a new search technique
developed by the presenter, David Churchill, which is de-
scribed in the accompanying AIIDE 2015 publication: “Hi-
erarchical Portfolio Search: Prismata’s robust AI architec-
ture for games with large search space” (Churchill 2015).
HPS offers a modular and generic approach to dealing with
abstract games with large action spaces, and is especially
powerful in strategy games like Prismata or real-time strat-
egy games like Starcraft, where turns have multiple actions

which can be broken down into tactical categories. Another
benefit of HPS to game designers is that the modular nature
of the search system allows for complex strategic behaviours
to be constructed from smaller tactical pieces. These mod-
ular configurations allow the AI to have multiple difficulty
settings and strategic play styles, which are easily created
and tuned within seconds. The AI bots in Prismata have
many difficulty settings, ranging from the virtual punching
bag Docile Bot all the way up to experienced player level
Master Bot, so that anyone can play the game and have fun.

Sarah & Sally

Figure 4: A screenshot of a puzzle in Sarah & Sally.

Creating reasonable AI for sidekicks in games has proven
to be a difficult challenge. Sarah & Sally is an experiment
in designing around the problems inherent in cooperative AI
development: it is a cooperative 2D puzzle-platformer that
looks similar to mainstream examples of the genre, but al-
lows for an easy implementation of a quality sidekick AI.
The design of the game allows the AI to find optimal solu-
tions using a straightforward search-based approach while
the problem remains relatively hard for a human player.

Exploring the experience of cooperating with an AI-
controlled character that matches human-level intelligence
(in the context of the game) was one of our main inter-
ests. We also see the game as an interesting exercise in AI-
motivated game design and, to a lesser extent, in communi-
cating the inner state of a search algorithm to the player.

In a cooperative puzzle-platformer, the player switches
control between multiple characters and has to complete a
task requiring complex collaboration of all the characters –
hence the “puzzle” part. The “platformer” ingredient is the
fact that the characters are generally affected by gravity and

229



an important part of solving the puzzles is figuring out how
to reach certain platforms in each level.

The most desirable property of those games is that re-
gardless of player skill, the game simply cannot be com-
pleted without the characters cooperating. We thus designed
a game with two characters where one is controlled by the
player, and the other one is an AI-controlled sidekick. We
chose the protagonists to be two girls with distinct appear-
ances: Sarah (the player character) is small while Sally (the
AI sidekick) is tall. The cooperation of the characters is en-
forced by their complementary abilities. To increase the feel-
ing that the sidekick is helping, her ability (levitating the
player character) is very powerful.

To make the game amenable to a simple search-based AI,
the game logic operates on a grid. At the same time we try
to hide this fact from the player by making the movement
of the characters smooth. Moreover, only one character is
active at a time and the other character cannot perform any
action until the active character ends her turn.

One of the most interesting challenges in developing the
game was exposing some of the AI’s internal state to the
player to make the collaboration possible. Note that it is not
desirable to expose its complete state, because the AI knows
the solution for the level and showing it to the player would
render the game uninteresting. The most important moment
to communicate is when the AI decides to perform no action
at all as these situations can easily lead to player frustration.
A nice side-effect of the search-based sidekick AI is that a
lot of information that is of interest to the player (e.g. the AI
character expects the player to help her) can be acquired by
analysing the optimal action sequence and/or the top levels
of the search tree.

In early playtests we noticed that players often think that
a solution is feasible, when in fact it is not. They would then
get frustrated because the AI refuses to help them. This state
is very difficult to communicate, as the AI would have to
understand what the player is trying to do and explain to
him why it is not possible. An even trickier situation arises
when a solution is found, but the player arrived at a differ-
ent (longer or incorrect) solution. Luckily, the simplistic de-
sign of our game lets us detect both of these situations with
reasonable accuracy and develop simple behaviours for the
AI that allow the game to progress and usually lead to the
player’s realization of the flaws in his approach. In a more
complex game this would likely be a very difficult problem.

The game is also a foundation for a paper entitled “Sarah
and Sally: Creating a Likeable and Competent AI Side-
kick for a Videogame” (Cerny 2015) accepted to the EXAG
workshop at AIIDE 2015, where the game is discussed in
more detail and a basic evaluation of player experience is
given.

Sure Footing
Sure Footing is an infinite runner game currently in develop-
ment by Table Flip Games Ltd and is programmed by Neall
Dewsbury, James Tatum and Tommy Thompson. The game
is intended as both a framework for procedural content gen-
eration research, as well as a fully fledged commercial prod-

Figure 5: A promotional screenshot from Sure Footing.

uct that will allow for broader assessment of prototypical
research outputs.

Gameplay Overview
Players take the role of one of several characters known as
’pixellites’, each with its own unique skills, who are attempt-
ing to escape from an evil force chasing them known as ‘The
Deletion Wave’. Players are tasked with navigating a series
of increasing more challenging environments that are pro-
cedurally generated at runtime. Sure Footing is an ‘infinite
runner’, a subset of the platforming genre of games in which
the player has limited to no control over the continued speed
and acceleration of his/her character and instead must fo-
cus on timing to avoid obstacles hazards. This has genre is
largely popularised by titles such as Canabalt and Temple

Run.
In Sure Footing, the emphasis is to maintain a steady run-

ning pace to avoid the enemy non-player character chasing
you. However, this becomes increasingly more difficult as
the number of activities players must handle in quick suc-
cession continues to increase, with hazards becoming much
harder over time.

Current Research
The genre of infinite runner was selected for this project
given the natural pairing of procedural content generation
research with a type of game that is largely reliant upon it.

The game is broken up into segments known as sprints,
separated by prefabricated chunks of environment - hereby
referred to as prefabs - that are designed to look like empty
streets. When the player reaches a new street segment, the
next batch of platforms is built before it comes within the
player’s view. The generation process is largely inspired by
existing work in the adoption of rhythm for the creation of
gameplay segments (Smith et al. 2011). Each sprint is built
in two phases: a grammar-driven action generation, followed
by the construction of geometry. Each of these phases is re-
liant upon a budget, which allows for designers to constrain
the expressiveness of the system at a given point: the former
constrains the number of activities the player will expect to
complete in a sprint, while the latter dictates the difficulty of
said activity given how it is built in the game world.

230



Action Generator The first phase of level construction is
a constraint-driven system that is reliant upon establishing
rhythm in gameplay. It adopts a series of specific activities
for the player to conduct.

Run: A flat section of terrain which the player must run
across.

Jump: A gap between platforms which may carry a small
variation in height.

Incline: A series of platforms or a ramp that gradually in-
creases in height.

Decline: A series of platforms or a ramp that gradually de-
crease in height.

Hopscotch: A series of platforms with one in the middle
that is higher than the others, forcing the player to hop
atop or over it.

Fall: Two platforms separated by a significant vertical drop.
Players are expected to fall or jump down to the lower
platform.

Spring: A long platform with a spring attached to the end
that will launch the player to a much higher platform.

Constraints are in place that prevent particular activities
appearing within close proximity to one another, or with a
given frequency. Furthermore, each activity carries a cost,
with the action generator responsible for minimising costs
of activities to fit within the assigned budget.

Geometry Generator With a complete action sequence
prepared for a given sprint, the geometry generator selects
from one of multiple prefabs that embody this particular ac-
tivity. The selected platform types, their length and the po-
tential difficulty they represent, dictate the cost of the prefab.
This allows us to decouple the number of activities we wish
to place in the sprint from the difficulty of navigating them.
Given a particular budget, the geometry generator will aim
to utilise it as best it can. In addition, upon placing particu-
lar prefabs, the game will add obstacles or collectables onto
platforms.

Future Goals
The current system allows for an increasingly more diffi-
cult game with relative ease: by increasing the action and/or
geometry budget for each sprint, the level segments become
gradually more challenging. We are currently experimenting
with a number of improvements: including more expressive
geometry generation that reflects particular character traits
and skills, a more modular generation processes which is
not reliant upon prefabricated level segments and options
for players to create their own prefabs and levels akin to that
previously discussed in the Launchpad project (Smith et al.
2011).

Conclusions
Bringing together academic research and modern game de-
velopment has always been a challenging aim of the AIIDE

conference. The playable experiences track is a growing, ex-
citing new aspect of this process, allowing us to celebrate ex-
isting fusions of research and game development, and also to
encourage researchers to try developing a broad range of ex-
periences themselves. This year’s track shows both familiar
ideas and brand new kinds of experience, and we hope to see
both sides of the track continue into the future.

References
Cerny, M. 2015. Sarah and sally: Creating a likeable and
competent ai sidekick for a videogame. In Proceedings of

the Experimental AI in Games Workshop at AIIDE.
Churchill, D. 2015. Hierarchical portfolio search: Prismata’s
robust ai architecture for games with large search space. In
Proceedings of the Artificial Intelligence in Interactive Dig-

ital Entertainment Conference.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -

The Planning Domain Definition Language.
Robertson, J., and Young, R. M. 2014. Gameplay as On-
Line Mediation Search. In Experimental AI in Games.
Smith, G.; Whitehead, J.; Mateas, M.; and Treanor, M. 2011.
Launchpad: A Rhythm-Based Level Generator for 2D Plat-
formers. IEEE Transactions on Computational Intelligence

and AI in Games 3.

231


